mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-06 23:36:33 +03:00
136 lines
13 KiB
Markdown
136 lines
13 KiB
Markdown
---
|
|
title: Scorer
|
|
teaser: Compute evaluation scores
|
|
tag: class
|
|
source: spacy/scorer.py
|
|
---
|
|
|
|
The `Scorer` computes evaluation scores. It's typically created by
|
|
[`Language.evaluate`](/api/language#evaluate).
|
|
|
|
In addition, the `Scorer` provides a number of evaluation methods for evaluating
|
|
`Token` and `Doc` attributes.
|
|
|
|
## Scorer.\_\_init\_\_ {#init tag="method"}
|
|
|
|
Create a new `Scorer`.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.scorer import Scorer
|
|
>
|
|
> # default scoring pipeline
|
|
> scorer = Scorer()
|
|
>
|
|
> # provided scoring pipeline
|
|
> nlp = spacy.load("en_core_web_sm")
|
|
> scorer = Scorer(nlp)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | -------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `nlp` | Language | The pipeline to use for scoring, where each pipeline component may provide a scoring method. If none is provided, then a default pipeline for the multi-language code `xx` is constructed containing: `senter`, `tagger`, `morphologizer`, `parser`, `ner`, `textcat`. |
|
|
| **RETURNS** | `Scorer` | The newly created object. |
|
|
|
|
## Scorer.score {#score tag="method"}
|
|
|
|
Calculate the scores for a list of [`Example`](/api/example) objects using the
|
|
scoring methods provided by the components in the pipeline.
|
|
|
|
The returned `Dict` contains the scores provided by the individual pipeline
|
|
components. For the scoring methods provided by the `Scorer` and use by the core
|
|
pipeline components, the individual score names start with the `Token` or `Doc`
|
|
attribute being scored: `token_acc`, `token_p/r/f`, `sents_p/r/f`, `tag_acc`,
|
|
`pos_acc`, `morph_acc`, `morph_per_feat`, `lemma_acc`, `dep_uas`, `dep_las`,
|
|
`dep_las_per_type`, `ents_p/r/f`, `ents_per_type`, `textcat_macro_auc`,
|
|
`textcat_macro_f`.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> scorer = Scorer()
|
|
> scorer.score(examples)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ------------------- | --------------------------------------------------------------------------------------------- |
|
|
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
|
| **RETURNS** | `Dict` | A dictionary of scores. |
|
|
|
|
## Scorer.score_tokenization {#score_tokenization tag="staticmethod"}
|
|
|
|
Scores the tokenization:
|
|
|
|
- `token_acc`: # correct tokens / # gold tokens
|
|
- `token_p/r/f`: PRF for token character spans
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ------------------- | --------------------------------------------------------------------------------------------- |
|
|
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
|
| **RETURNS** | `Dict` | A dictionary containing the scores `token_acc/p/r/f`. |
|
|
|
|
## Scorer.score_token_attr {#score_token_attr tag="staticmethod"}
|
|
|
|
Scores a single token attribute.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
|
| `attr` | `str` | The attribute to score. |
|
|
| `getter` | `callable` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. |
|
|
| **RETURNS** | `Dict` | A dictionary containing the score `attr_acc`. |
|
|
|
|
## Scorer.score_token_attr_per_feat {#score_token_attr_per_feat tag="staticmethod"}
|
|
|
|
Scores a single token attribute per feature for a token attribute in UFEATS
|
|
format.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
|
| `attr` | `str` | The attribute to score. |
|
|
| `getter` | `callable` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. |
|
|
| **RETURNS** | `Dict` | A dictionary containing the per-feature PRF scores unders the key `attr_per_feat`. |
|
|
|
|
## Scorer.score_spans {#score_spans tag="staticmethod"}
|
|
|
|
Returns PRF scores for labeled or unlabeled spans.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ------------------- | --------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
|
| `attr` | `str` | The attribute to score. |
|
|
| `getter` | `callable` | Defaults to `getattr`. If provided, `getter(doc, attr)` should return the `Span` objects for an individual `Doc`. |
|
|
| **RETURNS** | `Dict` | A dictionary containing the PRF scores under the keys `attr_p/r/f` and the per-type PRF scores under `attr_per_type`. |
|
|
|
|
## Scorer.score_deps {#score_deps tag="staticmethod"}
|
|
|
|
Calculate the UAS, LAS, and LAS per type scores for dependency parses.
|
|
|
|
| Name | Type | Description |
|
|
| --------------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
|
| `attr` | `str` | The attribute containing the dependency label. |
|
|
| `getter` | `callable` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. |
|
|
| `head_attr` | `str` | The attribute containing the head token. |
|
|
| `head_getter` | `callable` | Defaults to `getattr`. If provided, `head_getter(token, attr)` should return the head for an individual `Token`. |
|
|
| `ignore_labels` | `Tuple` | Labels to ignore while scoring (e.g., `punct`). |
|
|
| **RETURNS** | `Dict` | A dictionary containing the scores: `attr_uas`, `attr_las`, and `attr_las_per_type`. |
|
|
|
|
## Scorer.score_cats {#score_cats tag="staticmethod"}
|
|
|
|
Calculate PRF and ROC AUC scores for a doc-level attribute that is a dict
|
|
containing scores for each label like `Doc.cats`. The reported overall score
|
|
depends on the scorer settings.
|
|
|
|
| Name | Type | Description |
|
|
| ---------------- | ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
|
| `attr` | `str` | The attribute to score. |
|
|
| `getter` | `callable` | Defaults to `getattr`. If provided, `getter(doc, attr)` should return the cats for an individual `Doc`. |
|
|
| labels | `Iterable[str]` | The set of possible labels. Defaults to `[]`. |
|
|
| `multi_label` | `bool` | Whether the attribute allows multiple labels. Defaults to `True`. |
|
|
| `positive_label` | `str` | The positive label for a binary task with exclusive classes. Defaults to `None`. |
|
|
| **RETURNS** | `Dict` | A dictionary containing the scores, with inapplicable scores as `None`: 1) for all: `attr_score` (one of `attr_f` / `attr_macro_f` / `attr_macro_auc`), `attr_score_desc` (text description of the overall score), `attr_f_per_type`, `attr_auc_per_type`; 2) for binary exclusive with positive label: `attr_p/r/f`; 3) for 3+ exclusive classes, macro-averaged fscore: `attr_macro_f`; 4) for multilabel, macro-averaged AUC: `attr_macro_auc` |
|