mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			394 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			394 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
title: EntityRecognizer
 | 
						|
tag: class
 | 
						|
source: spacy/pipeline/ner.pyx
 | 
						|
teaser: 'Pipeline component for named entity recognition'
 | 
						|
api_base_class: /api/pipe
 | 
						|
api_string_name: ner
 | 
						|
api_trainable: true
 | 
						|
---
 | 
						|
 | 
						|
A transition-based named entity recognition component. The entity recognizer
 | 
						|
identifies **non-overlapping labelled spans** of tokens. The transition-based
 | 
						|
algorithm used encodes certain assumptions that are effective for "traditional"
 | 
						|
named entity recognition tasks, but may not be a good fit for every span
 | 
						|
identification problem. Specifically, the loss function optimizes for **whole
 | 
						|
entity accuracy**, so if your inter-annotator agreement on boundary tokens is
 | 
						|
low, the component will likely perform poorly on your problem. The
 | 
						|
transition-based algorithm also assumes that the most decisive information about
 | 
						|
your entities will be close to their initial tokens. If your entities are long
 | 
						|
and characterized by tokens in their middle, the component will likely not be a
 | 
						|
good fit for your task.
 | 
						|
 | 
						|
## Config and implementation {#config}
 | 
						|
 | 
						|
The default config is defined by the pipeline component factory and describes
 | 
						|
how the component should be configured. You can override its settings via the
 | 
						|
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | 
						|
[`config.cfg` for training](/usage/training#config). See the
 | 
						|
[model architectures](/api/architectures) documentation for details on the
 | 
						|
architectures and their arguments and hyperparameters.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> from spacy.pipeline.ner import DEFAULT_NER_MODEL
 | 
						|
> config = {
 | 
						|
>    "moves": None,
 | 
						|
>    "update_with_oracle_cut_size": 100,
 | 
						|
>    "model": DEFAULT_NER_MODEL,
 | 
						|
> }
 | 
						|
> nlp.add_pipe("ner", config=config)
 | 
						|
> ```
 | 
						|
 | 
						|
| Setting                       | Type                                       | Description                                                                                                                                                                                                              | Default                                                           |
 | 
						|
| ----------------------------- | ------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ----------------------------------------------------------------- |
 | 
						|
| `moves`                       | `List[str]`                                | A list of transition names. Inferred from the data if not provided.                                                                                                                                                      |
 | 
						|
| `update_with_oracle_cut_size` | int                                        | During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. | `100`                                                             |
 | 
						|
| `model`                       | [`Model`](https://thinc.ai/docs/api-model) | The model to use.                                                                                                                                                                                                        | [TransitionBasedParser](/api/architectures#TransitionBasedParser) |
 | 
						|
 | 
						|
```python
 | 
						|
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/ner.pyx
 | 
						|
```
 | 
						|
 | 
						|
## EntityRecognizer.\_\_init\_\_ {#init tag="method"}
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> # Construction via add_pipe with default model
 | 
						|
> ner = nlp.add_pipe("ner")
 | 
						|
>
 | 
						|
> # Construction via add_pipe with custom model
 | 
						|
> config = {"model": {"@architectures": "my_ner"}}
 | 
						|
> parser = nlp.add_pipe("ner", config=config)
 | 
						|
>
 | 
						|
> # Construction from class
 | 
						|
> from spacy.pipeline import EntityRecognizer
 | 
						|
> ner = EntityRecognizer(nlp.vocab, model)
 | 
						|
> ```
 | 
						|
 | 
						|
Create a new pipeline instance. In your application, you would normally use a
 | 
						|
shortcut for this and instantiate the component using its string name and
 | 
						|
[`nlp.add_pipe`](/api/language#add_pipe).
 | 
						|
 | 
						|
| Name                          | Type                                       | Description                                                                                                                                                                                                                                       |
 | 
						|
| ----------------------------- | ------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `vocab`                       | `Vocab`                                    | The shared vocabulary.                                                                                                                                                                                                                            |
 | 
						|
| `model`                       | [`Model`](https://thinc.ai/docs/api-model) | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component.                                                                                                                                                                   |
 | 
						|
| `name`                        | str                                        | String name of the component instance. Used to add entries to the `losses` during training.                                                                                                                                                       |
 | 
						|
| `moves`                       | `List[str]`                                | A list of transition names. Inferred from the data if not provided.                                                                                                                                                                               |
 | 
						|
| _keyword-only_                |                                            |                                                                                                                                                                                                                                                   |
 | 
						|
| `update_with_oracle_cut_size` | int                                        | During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. `100` is a good default. |
 | 
						|
 | 
						|
## EntityRecognizer.\_\_call\_\_ {#call tag="method"}
 | 
						|
 | 
						|
Apply the pipe to one document. The document is modified in place, and returned.
 | 
						|
This usually happens under the hood when the `nlp` object is called on a text
 | 
						|
and all pipeline components are applied to the `Doc` in order. Both
 | 
						|
[`__call__`](/api/entityrecognizer#call) and
 | 
						|
[`pipe`](/api/entityrecognizer#pipe) delegate to the
 | 
						|
[`predict`](/api/entityrecognizer#predict) and
 | 
						|
[`set_annotations`](/api/entityrecognizer#set_annotations) methods.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> doc = nlp("This is a sentence.")
 | 
						|
> ner = nlp.add_pipe("ner")
 | 
						|
> # This usually happens under the hood
 | 
						|
> processed = ner(doc)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type  | Description              |
 | 
						|
| ----------- | ----- | ------------------------ |
 | 
						|
| `doc`       | `Doc` | The document to process. |
 | 
						|
| **RETURNS** | `Doc` | The processed document.  |
 | 
						|
 | 
						|
## EntityRecognizer.pipe {#pipe tag="method"}
 | 
						|
 | 
						|
Apply the pipe to a stream of documents. This usually happens under the hood
 | 
						|
when the `nlp` object is called on a text and all pipeline components are
 | 
						|
applied to the `Doc` in order. Both [`__call__`](/api/entityrecognizer#call) and
 | 
						|
[`pipe`](/api/entityrecognizer#pipe) delegate to the
 | 
						|
[`predict`](/api/entityrecognizer#predict) and
 | 
						|
[`set_annotations`](/api/entityrecognizer#set_annotations) methods.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> ner = nlp.add_pipe("ner")
 | 
						|
> for doc in ner.pipe(docs, batch_size=50):
 | 
						|
>     pass
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Type            | Description                                            |
 | 
						|
| -------------- | --------------- | ------------------------------------------------------ |
 | 
						|
| `docs`         | `Iterable[Doc]` | A stream of documents.                                 |
 | 
						|
| _keyword-only_ |                 |                                                        |
 | 
						|
| `batch_size`   | int             | The number of texts to buffer. Defaults to `128`.      |
 | 
						|
| **YIELDS**     | `Doc`           | Processed documents in the order of the original text. |
 | 
						|
 | 
						|
## EntityRecognizer.begin_training {#begin_training tag="method"}
 | 
						|
 | 
						|
Initialize the pipe for training, using data examples if available. Returns an
 | 
						|
[`Optimizer`](https://thinc.ai/docs/api-optimizers) object.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> ner = nlp.add_pipe("ner")
 | 
						|
> optimizer = ner.begin_training(pipeline=nlp.pipeline)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Type                                                | Description                                                                                                         |
 | 
						|
| -------------- | --------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `get_examples` | `Callable[[], Iterable[Example]]`                   | Optional function that returns gold-standard annotations in the form of [`Example`](/api/example) objects.          |
 | 
						|
| _keyword-only_ |                                                     |                                                                                                                     |
 | 
						|
| `pipeline`     | `List[Tuple[str, Callable]]`                        | Optional list of pipeline components that this component is part of.                                                |
 | 
						|
| `sgd`          | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | An optional optimizer. Will be created via [`create_optimizer`](/api/entityrecognizer#create_optimizer) if not set. |
 | 
						|
| **RETURNS**    | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer.                                                                                                      |
 | 
						|
 | 
						|
## EntityRecognizer.predict {#predict tag="method"}
 | 
						|
 | 
						|
Apply the pipeline's model to a batch of docs, without modifying them.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> ner = nlp.add_pipe("ner")
 | 
						|
> scores = ner.predict([doc1, doc2])
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type               | Description                                                                                                |
 | 
						|
| ----------- | ------------------ | ---------------------------------------------------------------------------------------------------------- |
 | 
						|
| `docs`      | `Iterable[Doc]`    | The documents to predict.                                                                                  |
 | 
						|
| **RETURNS** | `List[StateClass]` | List of `syntax.StateClass` objects. `syntax.StateClass` is a helper class for the parse state (internal). |
 | 
						|
 | 
						|
## EntityRecognizer.set_annotations {#set_annotations tag="method"}
 | 
						|
 | 
						|
Modify a batch of documents, using pre-computed scores.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> ner = nlp.add_pipe("ner")
 | 
						|
> scores = ner.predict([doc1, doc2])
 | 
						|
> ner.set_annotations([doc1, doc2], scores)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name     | Type               | Description                                                |
 | 
						|
| -------- | ------------------ | ---------------------------------------------------------- |
 | 
						|
| `docs`   | `Iterable[Doc]`    | The documents to modify.                                   |
 | 
						|
| `scores` | `List[StateClass]` | The scores to set, produced by `EntityRecognizer.predict`. |
 | 
						|
 | 
						|
## EntityRecognizer.update {#update tag="method"}
 | 
						|
 | 
						|
Learn from a batch of [`Example`](/api/example) objects, updating the pipe's
 | 
						|
model. Delegates to [`predict`](/api/entityrecognizer#predict) and
 | 
						|
[`get_loss`](/api/entityrecognizer#get_loss).
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> ner = nlp.add_pipe("ner")
 | 
						|
> optimizer = nlp.begin_training()
 | 
						|
> losses = ner.update(examples, sgd=optimizer)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name              | Type                                                | Description                                                                                                                                    |
 | 
						|
| ----------------- | --------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `examples`        | `Iterable[Example]`                                 | A batch of [`Example`](/api/example) objects to learn from.                                                                                    |
 | 
						|
| _keyword-only_    |                                                     |                                                                                                                                                |
 | 
						|
| `drop`            | float                                               | The dropout rate.                                                                                                                              |
 | 
						|
| `set_annotations` | bool                                                | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/entityrecognizer#set_annotations). |
 | 
						|
| `sgd`             | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer.                                                                                                                                 |
 | 
						|
| `losses`          | `Dict[str, float]`                                  | Optional record of the loss during training. Updated using the component name as the key.                                                      |
 | 
						|
| **RETURNS**       | `Dict[str, float]`                                  | The updated `losses` dictionary.                                                                                                               |
 | 
						|
 | 
						|
## EntityRecognizer.get_loss {#get_loss tag="method"}
 | 
						|
 | 
						|
Find the loss and gradient of loss for the batch of documents and their
 | 
						|
predicted scores.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> ner = nlp.add_pipe("ner")
 | 
						|
> scores = ner.predict([eg.predicted for eg in examples])
 | 
						|
> loss, d_loss = ner.get_loss(examples, scores)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type                  | Description                                         |
 | 
						|
| ----------- | --------------------- | --------------------------------------------------- |
 | 
						|
| `examples`  | `Iterable[Example]`   | The batch of examples.                              |
 | 
						|
| `scores`    | `List[StateClass]`    | Scores representing the model's predictions.        |
 | 
						|
| **RETURNS** | `Tuple[float, float]` | The loss and the gradient, i.e. `(loss, gradient)`. |
 | 
						|
 | 
						|
## EntityRecognizer.score {#score tag="method" new="3"}
 | 
						|
 | 
						|
Score a batch of examples.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> scores = ner.score(examples)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type                | Description                                                              |
 | 
						|
| ----------- | ------------------- | ------------------------------------------------------------------------ |
 | 
						|
| `examples`  | `Iterable[Example]` | The examples to score.                                                   |
 | 
						|
| **RETURNS** | `Dict[str, Any]`    | The scores, produced by [`Scorer.score_spans`](/api/scorer#score_spans). |
 | 
						|
 | 
						|
## EntityRecognizer.create_optimizer {#create_optimizer tag="method"}
 | 
						|
 | 
						|
Create an optimizer for the pipeline component.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> ner = nlp.add_pipe("ner")
 | 
						|
> optimizer = ner.create_optimizer()
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type                                                | Description    |
 | 
						|
| ----------- | --------------------------------------------------- | -------------- |
 | 
						|
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
 | 
						|
 | 
						|
## EntityRecognizer.use_params {#use_params tag="method, contextmanager"}
 | 
						|
 | 
						|
Modify the pipe's model, to use the given parameter values. At the end of the
 | 
						|
context, the original parameters are restored.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> ner = EntityRecognizer(nlp.vocab)
 | 
						|
> with ner.use_params(optimizer.averages):
 | 
						|
>     ner.to_disk("/best_model")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name     | Type | Description                               |
 | 
						|
| -------- | ---- | ----------------------------------------- |
 | 
						|
| `params` | dict | The parameter values to use in the model. |
 | 
						|
 | 
						|
## EntityRecognizer.add_label {#add_label tag="method"}
 | 
						|
 | 
						|
Add a new label to the pipe.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> ner = nlp.add_pipe("ner")
 | 
						|
> ner.add_label("MY_LABEL")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type | Description                                         |
 | 
						|
| ----------- | ---- | --------------------------------------------------- |
 | 
						|
| `label`     | str  | The label to add.                                   |
 | 
						|
| **RETURNS** | int  | `0` if the label is already present, otherwise `1`. |
 | 
						|
 | 
						|
## EntityRecognizer.to_disk {#to_disk tag="method"}
 | 
						|
 | 
						|
Serialize the pipe to disk.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> ner = nlp.add_pipe("ner")
 | 
						|
> ner.to_disk("/path/to/ner")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Type            | Description                                                                                                           |
 | 
						|
| -------------- | --------------- | --------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `path`         | str / `Path`    | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
 | 
						|
| _keyword-only_ |                 |                                                                                                                       |
 | 
						|
| `exclude`      | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude.                                             |
 | 
						|
 | 
						|
## EntityRecognizer.from_disk {#from_disk tag="method"}
 | 
						|
 | 
						|
Load the pipe from disk. Modifies the object in place and returns it.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> ner = nlp.add_pipe("ner")
 | 
						|
> ner.from_disk("/path/to/ner")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Type               | Description                                                                |
 | 
						|
| -------------- | ------------------ | -------------------------------------------------------------------------- |
 | 
						|
| `path`         | str / `Path`       | A path to a directory. Paths may be either strings or `Path`-like objects. |
 | 
						|
| _keyword-only_ |                    |                                                                            |
 | 
						|
| `exclude`      | `Iterable[str]`    | String names of [serialization fields](#serialization-fields) to exclude.  |
 | 
						|
| **RETURNS**    | `EntityRecognizer` | The modified `EntityRecognizer` object.                                    |
 | 
						|
 | 
						|
## EntityRecognizer.to_bytes {#to_bytes tag="method"}
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> ner = nlp.add_pipe("ner")
 | 
						|
> ner_bytes = ner.to_bytes()
 | 
						|
> ```
 | 
						|
 | 
						|
Serialize the pipe to a bytestring.
 | 
						|
 | 
						|
| Name           | Type            | Description                                                               |
 | 
						|
| -------------- | --------------- | ------------------------------------------------------------------------- |
 | 
						|
| _keyword-only_ |                 |                                                                           |
 | 
						|
| `exclude`      | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
 | 
						|
| **RETURNS**    | bytes           | The serialized form of the `EntityRecognizer` object.                     |
 | 
						|
 | 
						|
## EntityRecognizer.from_bytes {#from_bytes tag="method"}
 | 
						|
 | 
						|
Load the pipe from a bytestring. Modifies the object in place and returns it.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> ner_bytes = ner.to_bytes()
 | 
						|
> ner = nlp.add_pipe("ner")
 | 
						|
> ner.from_bytes(ner_bytes)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Type               | Description                                                               |
 | 
						|
| -------------- | ------------------ | ------------------------------------------------------------------------- |
 | 
						|
| `bytes_data`   | bytes              | The data to load from.                                                    |
 | 
						|
| _keyword-only_ |                    |                                                                           |
 | 
						|
| `exclude`      | `Iterable[str]`    | String names of [serialization fields](#serialization-fields) to exclude. |
 | 
						|
| **RETURNS**    | `EntityRecognizer` | The `EntityRecognizer` object.                                            |
 | 
						|
 | 
						|
## EntityRecognizer.labels {#labels tag="property"}
 | 
						|
 | 
						|
The labels currently added to the component.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> ner.add_label("MY_LABEL")
 | 
						|
> assert "MY_LABEL" in ner.labels
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type  | Description                        |
 | 
						|
| ----------- | ----- | ---------------------------------- |
 | 
						|
| **RETURNS** | tuple | The labels added to the component. |
 | 
						|
 | 
						|
## Serialization fields {#serialization-fields}
 | 
						|
 | 
						|
During serialization, spaCy will export several data fields used to restore
 | 
						|
different aspects of the object. If needed, you can exclude them from
 | 
						|
serialization by passing in the string names via the `exclude` argument.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> data = ner.to_disk("/path", exclude=["vocab"])
 | 
						|
> ```
 | 
						|
 | 
						|
| Name    | Description                                                    |
 | 
						|
| ------- | -------------------------------------------------------------- |
 | 
						|
| `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | 
						|
| `cfg`   | The config file. You usually don't want to exclude this.       |
 | 
						|
| `model` | The binary model data. You usually don't want to exclude this. |
 |