mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
		
			
				
	
	
		
			226 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			226 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| from spacy import displacy
 | |
| from spacy.lang.en import English
 | |
| from spacy.lang.ja import Japanese
 | |
| from spacy.lang.xx import MultiLanguage
 | |
| from spacy.language import Language
 | |
| from spacy.matcher import Matcher
 | |
| from spacy.tokens import Doc, Span
 | |
| from spacy.vocab import Vocab
 | |
| from spacy.compat import pickle
 | |
| from spacy.util import link_vectors_to_models
 | |
| import numpy
 | |
| import random
 | |
| 
 | |
| from ..util import get_doc
 | |
| 
 | |
| 
 | |
| def test_issue2564():
 | |
|     """Test the tagger sets is_tagged correctly when used via Language.pipe."""
 | |
|     nlp = Language()
 | |
|     tagger = nlp.create_pipe("tagger")
 | |
|     with pytest.warns(UserWarning):
 | |
|         tagger.begin_training()  # initialise weights
 | |
|     nlp.add_pipe(tagger)
 | |
|     doc = nlp("hello world")
 | |
|     assert doc.is_tagged
 | |
|     docs = nlp.pipe(["hello", "world"])
 | |
|     piped_doc = next(docs)
 | |
|     assert piped_doc.is_tagged
 | |
| 
 | |
| 
 | |
| def test_issue2569(en_tokenizer):
 | |
|     """Test that operator + is greedy."""
 | |
|     doc = en_tokenizer("It is May 15, 1993.")
 | |
|     doc.ents = [Span(doc, 2, 6, label=doc.vocab.strings["DATE"])]
 | |
|     matcher = Matcher(doc.vocab)
 | |
|     matcher.add("RULE", [[{"ENT_TYPE": "DATE", "OP": "+"}]])
 | |
|     matched = [doc[start:end] for _, start, end in matcher(doc)]
 | |
|     matched = sorted(matched, key=len, reverse=True)
 | |
|     assert len(matched) == 10
 | |
|     assert len(matched[0]) == 4
 | |
|     assert matched[0].text == "May 15, 1993"
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "text",
 | |
|     [
 | |
|         "ABLEItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume TABLE ItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume ItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume",
 | |
|         "oow.jspsearch.eventoracleopenworldsearch.technologyoraclesolarissearch.technologystoragesearch.technologylinuxsearch.technologyserverssearch.technologyvirtualizationsearch.technologyengineeredsystemspcodewwmkmppscem:",
 | |
|     ],
 | |
| )
 | |
| def test_issue2626_2835(en_tokenizer, text):
 | |
|     """Check that sentence doesn't cause an infinite loop in the tokenizer."""
 | |
|     doc = en_tokenizer(text)
 | |
|     assert doc
 | |
| 
 | |
| 
 | |
| def test_issue2656(en_tokenizer):
 | |
|     """Test that tokenizer correctly splits of punctuation after numbers with
 | |
|     decimal points.
 | |
|     """
 | |
|     doc = en_tokenizer("I went for 40.3, and got home by 10.0.")
 | |
|     assert len(doc) == 11
 | |
|     assert doc[0].text == "I"
 | |
|     assert doc[1].text == "went"
 | |
|     assert doc[2].text == "for"
 | |
|     assert doc[3].text == "40.3"
 | |
|     assert doc[4].text == ","
 | |
|     assert doc[5].text == "and"
 | |
|     assert doc[6].text == "got"
 | |
|     assert doc[7].text == "home"
 | |
|     assert doc[8].text == "by"
 | |
|     assert doc[9].text == "10.0"
 | |
|     assert doc[10].text == "."
 | |
| 
 | |
| 
 | |
| def test_issue2671():
 | |
|     """Ensure the correct entity ID is returned for matches with quantifiers.
 | |
|     See also #2675
 | |
|     """
 | |
|     nlp = English()
 | |
|     matcher = Matcher(nlp.vocab)
 | |
|     pattern_id = "test_pattern"
 | |
|     pattern = [
 | |
|         {"LOWER": "high"},
 | |
|         {"IS_PUNCT": True, "OP": "?"},
 | |
|         {"LOWER": "adrenaline"},
 | |
|     ]
 | |
|     matcher.add(pattern_id, [pattern])
 | |
|     doc1 = nlp("This is a high-adrenaline situation.")
 | |
|     doc2 = nlp("This is a high adrenaline situation.")
 | |
|     matches1 = matcher(doc1)
 | |
|     for match_id, start, end in matches1:
 | |
|         assert nlp.vocab.strings[match_id] == pattern_id
 | |
|     matches2 = matcher(doc2)
 | |
|     for match_id, start, end in matches2:
 | |
|         assert nlp.vocab.strings[match_id] == pattern_id
 | |
| 
 | |
| 
 | |
| def test_issue2728(en_vocab):
 | |
|     """Test that displaCy ENT visualizer escapes HTML correctly."""
 | |
|     doc = Doc(en_vocab, words=["test", "<RELEASE>", "test"])
 | |
|     doc.ents = [Span(doc, 0, 1, label="TEST")]
 | |
|     html = displacy.render(doc, style="ent")
 | |
|     assert "<RELEASE>" in html
 | |
|     doc.ents = [Span(doc, 1, 2, label="TEST")]
 | |
|     html = displacy.render(doc, style="ent")
 | |
|     assert "<RELEASE>" in html
 | |
| 
 | |
| 
 | |
| def test_issue2754(en_tokenizer):
 | |
|     """Test that words like 'a' and 'a.m.' don't get exceptional norm values."""
 | |
|     a = en_tokenizer("a")
 | |
|     assert a[0].norm_ == "a"
 | |
|     am = en_tokenizer("am")
 | |
|     assert am[0].norm_ == "am"
 | |
| 
 | |
| 
 | |
| def test_issue2772(en_vocab):
 | |
|     """Test that deprojectivization doesn't mess up sentence boundaries."""
 | |
|     words = "When we write or communicate virtually , we can hide our true feelings .".split()
 | |
|     # A tree with a non-projective (i.e. crossing) arc
 | |
|     # The arcs (0, 4) and (2, 9) cross.
 | |
|     heads = [4, 1, 7, -1, -2, -1, 3, 2, 1, 0, -1, -2, -1]
 | |
|     deps = ["dep"] * len(heads)
 | |
|     doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
 | |
|     assert doc[1].is_sent_start is None
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("text", ["-0.23", "+123,456", "±1"])
 | |
| @pytest.mark.parametrize("lang_cls", [English, MultiLanguage])
 | |
| def test_issue2782(text, lang_cls):
 | |
|     """Check that like_num handles + and - before number."""
 | |
|     nlp = lang_cls()
 | |
|     doc = nlp(text)
 | |
|     assert len(doc) == 1
 | |
|     assert doc[0].like_num
 | |
| 
 | |
| 
 | |
| def test_issue2800():
 | |
|     """Test issue that arises when too many labels are added to NER model.
 | |
|     Used to cause segfault.
 | |
|     """
 | |
|     train_data = []
 | |
|     train_data.extend([("One sentence", {"entities": []})])
 | |
|     entity_types = [str(i) for i in range(1000)]
 | |
|     nlp = English()
 | |
|     ner = nlp.create_pipe("ner")
 | |
|     nlp.add_pipe(ner)
 | |
|     for entity_type in list(entity_types):
 | |
|         ner.add_label(entity_type)
 | |
|     optimizer = nlp.begin_training()
 | |
|     for i in range(20):
 | |
|         losses = {}
 | |
|         random.shuffle(train_data)
 | |
|         for statement, entities in train_data:
 | |
|             nlp.update((statement, entities), sgd=optimizer, losses=losses, drop=0.5)
 | |
| 
 | |
| 
 | |
| def test_issue2822(it_tokenizer):
 | |
|     """Test that the abbreviation of poco is kept as one word."""
 | |
|     doc = it_tokenizer("Vuoi un po' di zucchero?")
 | |
|     assert len(doc) == 6
 | |
|     assert doc[0].text == "Vuoi"
 | |
|     assert doc[1].text == "un"
 | |
|     assert doc[2].text == "po'"
 | |
|     assert doc[2].lemma_ == "poco"
 | |
|     assert doc[3].text == "di"
 | |
|     assert doc[4].text == "zucchero"
 | |
|     assert doc[5].text == "?"
 | |
| 
 | |
| 
 | |
| def test_issue2833(en_vocab):
 | |
|     """Test that a custom error is raised if a token or span is pickled."""
 | |
|     doc = Doc(en_vocab, words=["Hello", "world"])
 | |
|     with pytest.raises(NotImplementedError):
 | |
|         pickle.dumps(doc[0])
 | |
|     with pytest.raises(NotImplementedError):
 | |
|         pickle.dumps(doc[0:2])
 | |
| 
 | |
| 
 | |
| def test_issue2871():
 | |
|     """Test that vectors recover the correct key for spaCy reserved words."""
 | |
|     words = ["dog", "cat", "SUFFIX"]
 | |
|     vocab = Vocab(vectors_name="test_issue2871")
 | |
|     vocab.vectors.resize(shape=(3, 10))
 | |
|     vector_data = numpy.zeros((3, 10), dtype="f")
 | |
|     for word in words:
 | |
|         _ = vocab[word]  # noqa: F841
 | |
|         vocab.set_vector(word, vector_data[0])
 | |
|     vocab.vectors.name = "dummy_vectors"
 | |
|     link_vectors_to_models(vocab)
 | |
|     assert vocab["dog"].rank == 0
 | |
|     assert vocab["cat"].rank == 1
 | |
|     assert vocab["SUFFIX"].rank == 2
 | |
|     assert vocab.vectors.find(key="dog") == 0
 | |
|     assert vocab.vectors.find(key="cat") == 1
 | |
|     assert vocab.vectors.find(key="SUFFIX") == 2
 | |
| 
 | |
| 
 | |
| def test_issue2901():
 | |
|     """Test that `nlp` doesn't fail."""
 | |
|     try:
 | |
|         nlp = Japanese()
 | |
|     except ImportError:
 | |
|         pytest.skip()
 | |
| 
 | |
|     doc = nlp("pythonが大好きです")
 | |
|     assert doc
 | |
| 
 | |
| 
 | |
| def test_issue2926(fr_tokenizer):
 | |
|     """Test that the tokenizer correctly splits tokens separated by a slash (/)
 | |
|     ending in a digit.
 | |
|     """
 | |
|     doc = fr_tokenizer("Learn html5/css3/javascript/jquery")
 | |
|     assert len(doc) == 8
 | |
|     assert doc[0].text == "Learn"
 | |
|     assert doc[1].text == "html5"
 | |
|     assert doc[2].text == "/"
 | |
|     assert doc[3].text == "css3"
 | |
|     assert doc[4].text == "/"
 | |
|     assert doc[5].text == "javascript"
 | |
|     assert doc[6].text == "/"
 | |
|     assert doc[7].text == "jquery"
 |