mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-13 13:17:06 +03:00
8d69874afb
* Add `spacy.PlainTextCorpusReader.v1` This is a corpus reader that reads plain text corpora with the following format: - UTF-8 encoding - One line per document. - Blank lines are ignored. It is useful for applications where we deal with very large corpora, such as distillation, and don't want to deal with the space overhead of serialized formats. Additionally, many large corpora already use such a text format, keeping the necessary preprocessing to a minimum. * Update spacy/training/corpus.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * docs: add version to `PlainTextCorpus` * Add docstring to registry function * Add plain text corpus tests * Only strip newline/carriage return * Add return type _string_to_tmp_file helper * Use a temporary directory in place of file name Different OS auto delete/sharing semantics are just wonky. * This will be new in 3.5.1 (rather than 4) * Test improvements from code review Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
331 lines
12 KiB
Python
331 lines
12 KiB
Python
import warnings
|
|
from typing import Union, List, Iterable, Iterator, TYPE_CHECKING, Callable
|
|
from typing import Optional
|
|
from pathlib import Path
|
|
import random
|
|
import srsly
|
|
|
|
from .. import util
|
|
from .augment import dont_augment
|
|
from .example import Example
|
|
from ..errors import Warnings, Errors
|
|
from ..tokens import DocBin, Doc
|
|
from ..vocab import Vocab
|
|
|
|
if TYPE_CHECKING:
|
|
# This lets us add type hints for mypy etc. without causing circular imports
|
|
from ..language import Language # noqa: F401
|
|
|
|
FILE_TYPE = ".spacy"
|
|
|
|
|
|
@util.registry.readers("spacy.Corpus.v1")
|
|
def create_docbin_reader(
|
|
path: Optional[Path],
|
|
gold_preproc: bool,
|
|
max_length: int = 0,
|
|
limit: int = 0,
|
|
augmenter: Optional[Callable] = None,
|
|
) -> Callable[["Language"], Iterable[Example]]:
|
|
if path is None:
|
|
raise ValueError(Errors.E913)
|
|
util.logger.debug(f"Loading corpus from path: {path}")
|
|
return Corpus(
|
|
path,
|
|
gold_preproc=gold_preproc,
|
|
max_length=max_length,
|
|
limit=limit,
|
|
augmenter=augmenter,
|
|
)
|
|
|
|
|
|
@util.registry.readers("spacy.JsonlCorpus.v1")
|
|
def create_jsonl_reader(
|
|
path: Optional[Union[str, Path]],
|
|
min_length: int = 0,
|
|
max_length: int = 0,
|
|
limit: int = 0,
|
|
) -> Callable[["Language"], Iterable[Example]]:
|
|
return JsonlCorpus(path, min_length=min_length, max_length=max_length, limit=limit)
|
|
|
|
|
|
@util.registry.readers("spacy.read_labels.v1")
|
|
def read_labels(path: Path, *, require: bool = False):
|
|
# I decided not to give this a generic name, because I don't want people to
|
|
# use it for arbitrary stuff, as I want this require arg with default False.
|
|
if not require and not path.exists():
|
|
return None
|
|
return srsly.read_json(path)
|
|
|
|
|
|
@util.registry.readers("spacy.PlainTextCorpus.v1")
|
|
def create_plain_text_reader(
|
|
path: Optional[Path],
|
|
min_length: int = 0,
|
|
max_length: int = 0,
|
|
) -> Callable[["Language"], Iterable[Doc]]:
|
|
"""Iterate Example objects from a file or directory of plain text
|
|
UTF-8 files with one line per doc.
|
|
|
|
path (Path): The directory or filename to read from.
|
|
min_length (int): Minimum document length (in tokens). Shorter documents
|
|
will be skipped. Defaults to 0, which indicates no limit.
|
|
max_length (int): Maximum document length (in tokens). Longer documents will
|
|
be skipped. Defaults to 0, which indicates no limit.
|
|
|
|
DOCS: https://spacy.io/api/corpus#plaintextcorpus
|
|
"""
|
|
if path is None:
|
|
raise ValueError(Errors.E913)
|
|
return PlainTextCorpus(path, min_length=min_length, max_length=max_length)
|
|
|
|
|
|
def walk_corpus(path: Union[str, Path], file_type) -> List[Path]:
|
|
path = util.ensure_path(path)
|
|
if not path.is_dir() and path.parts[-1].endswith(file_type):
|
|
return [path]
|
|
orig_path = path
|
|
paths = [path]
|
|
locs = []
|
|
seen = set()
|
|
for path in paths:
|
|
if str(path) in seen:
|
|
continue
|
|
seen.add(str(path))
|
|
if path.parts and path.parts[-1].startswith("."):
|
|
continue
|
|
elif path.is_dir():
|
|
paths.extend(path.iterdir())
|
|
elif path.parts[-1].endswith(file_type):
|
|
locs.append(path)
|
|
if len(locs) == 0:
|
|
warnings.warn(Warnings.W090.format(path=orig_path, format=file_type))
|
|
# It's good to sort these, in case the ordering messes up a cache.
|
|
locs.sort()
|
|
return locs
|
|
|
|
|
|
class Corpus:
|
|
"""Iterate Example objects from a file or directory of DocBin (.spacy)
|
|
formatted data files.
|
|
|
|
path (Path): The directory or filename to read from.
|
|
gold_preproc (bool): Whether to set up the Example object with gold-standard
|
|
sentences and tokens for the predictions. Gold preprocessing helps
|
|
the annotations align to the tokenization, and may result in sequences
|
|
of more consistent length. However, it may reduce run-time accuracy due
|
|
to train/test skew. Defaults to False.
|
|
max_length (int): Maximum document length. Longer documents will be
|
|
split into sentences, if sentence boundaries are available. Defaults to
|
|
0, which indicates no limit.
|
|
limit (int): Limit corpus to a subset of examples, e.g. for debugging.
|
|
Defaults to 0, which indicates no limit.
|
|
augment (Callable[Example, Iterable[Example]]): Optional data augmentation
|
|
function, to extrapolate additional examples from your annotations.
|
|
shuffle (bool): Whether to shuffle the examples.
|
|
|
|
DOCS: https://spacy.io/api/corpus
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
path: Union[str, Path],
|
|
*,
|
|
limit: int = 0,
|
|
gold_preproc: bool = False,
|
|
max_length: int = 0,
|
|
augmenter: Optional[Callable] = None,
|
|
shuffle: bool = False,
|
|
) -> None:
|
|
self.path = util.ensure_path(path)
|
|
self.gold_preproc = gold_preproc
|
|
self.max_length = max_length
|
|
self.limit = limit
|
|
self.augmenter = augmenter if augmenter is not None else dont_augment
|
|
self.shuffle = shuffle
|
|
|
|
def __call__(self, nlp: "Language") -> Iterator[Example]:
|
|
"""Yield examples from the data.
|
|
|
|
nlp (Language): The current nlp object.
|
|
YIELDS (Example): The examples.
|
|
|
|
DOCS: https://spacy.io/api/corpus#call
|
|
"""
|
|
ref_docs = self.read_docbin(nlp.vocab, walk_corpus(self.path, FILE_TYPE))
|
|
if self.shuffle:
|
|
ref_docs = list(ref_docs) # type: ignore
|
|
random.shuffle(ref_docs) # type: ignore
|
|
|
|
if self.gold_preproc:
|
|
examples = self.make_examples_gold_preproc(nlp, ref_docs)
|
|
else:
|
|
examples = self.make_examples(nlp, ref_docs)
|
|
for real_eg in examples:
|
|
for augmented_eg in self.augmenter(nlp, real_eg): # type: ignore[operator]
|
|
yield augmented_eg
|
|
|
|
def _make_example(
|
|
self, nlp: "Language", reference: Doc, gold_preproc: bool
|
|
) -> Example:
|
|
if gold_preproc or reference.has_unknown_spaces:
|
|
return Example(
|
|
Doc(
|
|
nlp.vocab,
|
|
words=[word.text for word in reference],
|
|
spaces=[bool(word.whitespace_) for word in reference],
|
|
),
|
|
reference,
|
|
)
|
|
else:
|
|
return Example(nlp.make_doc(reference.text), reference)
|
|
|
|
def make_examples(
|
|
self, nlp: "Language", reference_docs: Iterable[Doc]
|
|
) -> Iterator[Example]:
|
|
for reference in reference_docs:
|
|
if len(reference) == 0:
|
|
continue
|
|
elif self.max_length == 0 or len(reference) < self.max_length:
|
|
yield self._make_example(nlp, reference, False)
|
|
elif reference.has_annotation("SENT_START"):
|
|
for ref_sent in reference.sents:
|
|
if len(ref_sent) == 0:
|
|
continue
|
|
elif self.max_length == 0 or len(ref_sent) < self.max_length:
|
|
yield self._make_example(nlp, ref_sent.as_doc(), False)
|
|
|
|
def make_examples_gold_preproc(
|
|
self, nlp: "Language", reference_docs: Iterable[Doc]
|
|
) -> Iterator[Example]:
|
|
for reference in reference_docs:
|
|
if reference.has_annotation("SENT_START"):
|
|
ref_sents = [sent.as_doc() for sent in reference.sents]
|
|
else:
|
|
ref_sents = [reference]
|
|
for ref_sent in ref_sents:
|
|
eg = self._make_example(nlp, ref_sent, True)
|
|
if len(eg.x):
|
|
yield eg
|
|
|
|
def read_docbin(
|
|
self, vocab: Vocab, locs: Iterable[Union[str, Path]]
|
|
) -> Iterator[Doc]:
|
|
"""Yield training examples as example dicts"""
|
|
i = 0
|
|
for loc in locs:
|
|
loc = util.ensure_path(loc)
|
|
if loc.parts[-1].endswith(FILE_TYPE): # type: ignore[union-attr]
|
|
doc_bin = DocBin().from_disk(loc)
|
|
docs = doc_bin.get_docs(vocab)
|
|
for doc in docs:
|
|
if len(doc):
|
|
yield doc
|
|
i += 1
|
|
if self.limit >= 1 and i >= self.limit:
|
|
break
|
|
|
|
|
|
class JsonlCorpus:
|
|
"""Iterate Example objects from a file or directory of jsonl
|
|
formatted raw text files.
|
|
|
|
path (Path): The directory or filename to read from.
|
|
min_length (int): Minimum document length (in tokens). Shorter documents
|
|
will be skipped. Defaults to 0, which indicates no limit.
|
|
|
|
max_length (int): Maximum document length (in tokens). Longer documents will
|
|
be skipped. Defaults to 0, which indicates no limit.
|
|
limit (int): Limit corpus to a subset of examples, e.g. for debugging.
|
|
Defaults to 0, which indicates no limit.
|
|
|
|
DOCS: https://spacy.io/api/corpus#jsonlcorpus
|
|
"""
|
|
|
|
file_type = "jsonl"
|
|
|
|
def __init__(
|
|
self,
|
|
path: Optional[Union[str, Path]],
|
|
*,
|
|
limit: int = 0,
|
|
min_length: int = 0,
|
|
max_length: int = 0,
|
|
) -> None:
|
|
self.path = util.ensure_path(path)
|
|
self.min_length = min_length
|
|
self.max_length = max_length
|
|
self.limit = limit
|
|
|
|
def __call__(self, nlp: "Language") -> Iterator[Example]:
|
|
"""Yield examples from the data.
|
|
|
|
nlp (Language): The current nlp object.
|
|
YIELDS (Example): The example objects.
|
|
|
|
DOCS: https://spacy.io/api/corpus#jsonlcorpus-call
|
|
"""
|
|
for loc in walk_corpus(self.path, ".jsonl"):
|
|
records = srsly.read_jsonl(loc)
|
|
for record in records:
|
|
doc = nlp.make_doc(record["text"])
|
|
if self.min_length >= 1 and len(doc) < self.min_length:
|
|
continue
|
|
elif self.max_length >= 1 and len(doc) >= self.max_length:
|
|
continue
|
|
else:
|
|
words = [w.text for w in doc]
|
|
spaces = [bool(w.whitespace_) for w in doc]
|
|
# We don't *need* an example here, but it seems nice to
|
|
# make it match the Corpus signature.
|
|
yield Example(doc, Doc(nlp.vocab, words=words, spaces=spaces))
|
|
|
|
|
|
class PlainTextCorpus:
|
|
"""Iterate Example objects from a file or directory of plain text
|
|
UTF-8 files with one line per doc.
|
|
|
|
path (Path): The directory or filename to read from.
|
|
min_length (int): Minimum document length (in tokens). Shorter documents
|
|
will be skipped. Defaults to 0, which indicates no limit.
|
|
max_length (int): Maximum document length (in tokens). Longer documents will
|
|
be skipped. Defaults to 0, which indicates no limit.
|
|
|
|
DOCS: https://spacy.io/api/corpus#plaintextcorpus
|
|
"""
|
|
|
|
file_type = "txt"
|
|
|
|
def __init__(
|
|
self,
|
|
path: Optional[Union[str, Path]],
|
|
*,
|
|
min_length: int = 0,
|
|
max_length: int = 0,
|
|
) -> None:
|
|
self.path = util.ensure_path(path)
|
|
self.min_length = min_length
|
|
self.max_length = max_length
|
|
|
|
def __call__(self, nlp: "Language") -> Iterator[Example]:
|
|
"""Yield examples from the data.
|
|
|
|
nlp (Language): The current nlp object.
|
|
YIELDS (Example): The example objects.
|
|
|
|
DOCS: https://spacy.io/api/corpus#plaintextcorpus-call
|
|
"""
|
|
for loc in walk_corpus(self.path, ".txt"):
|
|
with open(loc, encoding="utf-8") as f:
|
|
for text in f:
|
|
text = text.rstrip("\r\n")
|
|
if len(text):
|
|
doc = nlp.make_doc(text)
|
|
if self.min_length >= 1 and len(doc) < self.min_length:
|
|
continue
|
|
elif self.max_length >= 1 and len(doc) > self.max_length:
|
|
continue
|
|
# We don't *need* an example here, but it seems nice to
|
|
# make it match the Corpus signature.
|
|
yield Example(doc, doc.copy())
|