mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 12:18:04 +03:00
792aa7b6ab
Remove references to unimplemented `TextCategorizer` span labels in `GoldParse` and `Doc`.
206 lines
15 KiB
Markdown
206 lines
15 KiB
Markdown
---
|
||
title: GoldParse
|
||
teaser: A collection for training annotations
|
||
tag: class
|
||
source: spacy/gold.pyx
|
||
---
|
||
|
||
## GoldParse.\_\_init\_\_ {#init tag="method"}
|
||
|
||
Create a `GoldParse`. The [`TextCategorizer`](/api/textcategorizer) component
|
||
expects true examples of a label to have the value `1.0`, and negative examples
|
||
of a label to have the value `0.0`. Labels not in the dictionary are treated as
|
||
missing – the gradient for those labels will be zero.
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `doc` | `Doc` | The document the annotations refer to. |
|
||
| `words` | iterable | A sequence of unicode word strings. |
|
||
| `tags` | iterable | A sequence of strings, representing tag annotations. |
|
||
| `heads` | iterable | A sequence of integers, representing syntactic head offsets. |
|
||
| `deps` | iterable | A sequence of strings, representing the syntactic relation types. |
|
||
| `entities` | iterable | A sequence of named entity annotations, either as BILUO tag strings, or as `(start_char, end_char, label)` tuples, representing the entity positions. If BILUO tag strings, you can specify missing values by setting the tag to None. |
|
||
| `cats` | dict | Labels for text classification. Each key in the dictionary is a string label for the category and each value is `1.0` (positive) or `0.0` (negative). |
|
||
| `links` | dict | Labels for entity linking. A dict with `(start_char, end_char)` keys, and the values being dicts with `kb_id:value` entries, representing external KB IDs mapped to either `1.0` (positive) or `0.0` (negative). |
|
||
| **RETURNS** | `GoldParse` | The newly constructed object. |
|
||
|
||
## GoldParse.\_\_len\_\_ {#len tag="method"}
|
||
|
||
Get the number of gold-standard tokens.
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---- | ----------------------------------- |
|
||
| **RETURNS** | int | The number of gold-standard tokens. |
|
||
|
||
## GoldParse.is_projective {#is_projective tag="property"}
|
||
|
||
Whether the provided syntactic annotations form a projective dependency tree.
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---- | ----------------------------------------- |
|
||
| **RETURNS** | bool | Whether annotations form projective tree. |
|
||
|
||
## Attributes {#attributes}
|
||
|
||
| Name | Type | Description |
|
||
| ------------------------------------ | ---- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `words` | list | The words. |
|
||
| `tags` | list | The part-of-speech tag annotations. |
|
||
| `heads` | list | The syntactic head annotations. |
|
||
| `labels` | list | The syntactic relation-type annotations. |
|
||
| `ner` | list | The named entity annotations as BILUO tags. |
|
||
| `cand_to_gold` | list | The alignment from candidate tokenization to gold tokenization. |
|
||
| `gold_to_cand` | list | The alignment from gold tokenization to candidate tokenization. |
|
||
| `cats` <Tag variant="new">2</Tag> | dict | Keys in the dictionary are string category labels with values `1.0` or `0.0`. |
|
||
| `links` <Tag variant="new">2.2</Tag> | dict | Keys in the dictionary are `(start_char, end_char)` triples, and the values are dictionaries with `kb_id:value` entries. |
|
||
|
||
## Utilities {#util}
|
||
|
||
### gold.docs_to_json {#docs_to_json tag="function"}
|
||
|
||
Convert a list of Doc objects into the
|
||
[JSON-serializable format](/api/annotation#json-input) used by the
|
||
[`spacy train`](/api/cli#train) command. Each input doc will be treated as a 'paragraph' in the output doc.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.gold import docs_to_json
|
||
>
|
||
> doc = nlp("I like London")
|
||
> json_data = docs_to_json([doc])
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---------------- | ------------------------------------------ |
|
||
| `docs` | iterable / `Doc` | The `Doc` object(s) to convert. |
|
||
| `id` | int | ID to assign to the JSON. Defaults to `0`. |
|
||
| **RETURNS** | dict | The data in spaCy's JSON format. |
|
||
|
||
### gold.align {#align tag="function"}
|
||
|
||
Calculate alignment tables between two tokenizations, using the Levenshtein
|
||
algorithm. The alignment is case-insensitive.
|
||
|
||
<Infobox title="Important note" variant="warning">
|
||
|
||
The current implementation of the alignment algorithm assumes that both
|
||
tokenizations add up to the same string. For example, you'll be able to align
|
||
`["I", "'", "m"]` and `["I", "'m"]`, which both add up to `"I'm"`, but not
|
||
`["I", "'m"]` and `["I", "am"]`.
|
||
|
||
</Infobox>
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.gold import align
|
||
>
|
||
> bert_tokens = ["obama", "'", "s", "podcast"]
|
||
> spacy_tokens = ["obama", "'s", "podcast"]
|
||
> alignment = align(bert_tokens, spacy_tokens)
|
||
> cost, a2b, b2a, a2b_multi, b2a_multi = alignment
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ----- | -------------------------------------------------------------------------- |
|
||
| `tokens_a` | list | String values of candidate tokens to align. |
|
||
| `tokens_b` | list | String values of reference tokens to align. |
|
||
| **RETURNS** | tuple | A `(cost, a2b, b2a, a2b_multi, b2a_multi)` tuple describing the alignment. |
|
||
|
||
The returned tuple contains the following alignment information:
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> a2b = array([0, -1, -1, 2])
|
||
> b2a = array([0, 2, 3])
|
||
> a2b_multi = {1: 1, 2: 1}
|
||
> b2a_multi = {}
|
||
> ```
|
||
>
|
||
> If `a2b[3] == 2`, that means that `tokens_a[3]` aligns to `tokens_b[2]`. If
|
||
> there's no one-to-one alignment for a token, it has the value `-1`.
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | -------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `cost` | int | The number of misaligned tokens. |
|
||
| `a2b` | `numpy.ndarray[ndim=1, dtype='int32']` | One-to-one mappings of indices in `tokens_a` to indices in `tokens_b`. |
|
||
| `b2a` | `numpy.ndarray[ndim=1, dtype='int32']` | One-to-one mappings of indices in `tokens_b` to indices in `tokens_a`. |
|
||
| `a2b_multi` | dict | A dictionary mapping indices in `tokens_a` to indices in `tokens_b`, where multiple tokens of `tokens_a` align to the same token of `tokens_b`. |
|
||
| `b2a_multi` | dict | A dictionary mapping indices in `tokens_b` to indices in `tokens_a`, where multiple tokens of `tokens_b` align to the same token of `tokens_a`. |
|
||
|
||
### gold.biluo_tags_from_offsets {#biluo_tags_from_offsets tag="function"}
|
||
|
||
Encode labelled spans into per-token tags, using the
|
||
[BILUO scheme](/api/annotation#biluo) (Begin, In, Last, Unit, Out). Returns a
|
||
list of unicode strings, describing the tags. Each tag string will be of the
|
||
form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of
|
||
`"B"`, `"I"`, `"L"`, `"U"`. The string `"-"` is used where the entity offsets
|
||
don't align with the tokenization in the `Doc` object. The training algorithm
|
||
will view these as missing values. `O` denotes a non-entity token. `B` denotes
|
||
the beginning of a multi-token entity, `I` the inside of an entity of three or
|
||
more tokens, and `L` the end of an entity of two or more tokens. `U` denotes a
|
||
single-token entity.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.gold import biluo_tags_from_offsets
|
||
>
|
||
> doc = nlp("I like London.")
|
||
> entities = [(7, 13, "LOC")]
|
||
> tags = biluo_tags_from_offsets(doc, entities)
|
||
> assert tags == ["O", "O", "U-LOC", "O"]
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | -------- | ----------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `doc` | `Doc` | The document that the entity offsets refer to. The output tags will refer to the token boundaries within the document. |
|
||
| `entities` | iterable | A sequence of `(start, end, label)` triples. `start` and `end` should be character-offset integers denoting the slice into the original string. |
|
||
| **RETURNS** | list | Unicode strings, describing the [BILUO](/api/annotation#biluo) tags. |
|
||
|
||
### gold.offsets_from_biluo_tags {#offsets_from_biluo_tags tag="function"}
|
||
|
||
Encode per-token tags following the [BILUO scheme](/api/annotation#biluo) into
|
||
entity offsets.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.gold import offsets_from_biluo_tags
|
||
>
|
||
> doc = nlp("I like London.")
|
||
> tags = ["O", "O", "U-LOC", "O"]
|
||
> entities = offsets_from_biluo_tags(doc, tags)
|
||
> assert entities == [(7, 13, "LOC")]
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `doc` | `Doc` | The document that the BILUO tags refer to. |
|
||
| `entities` | iterable | A sequence of [BILUO](/api/annotation#biluo) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. |
|
||
| **RETURNS** | list | A sequence of `(start, end, label)` triples. `start` and `end` will be character-offset integers denoting the slice into the original string. |
|
||
|
||
### gold.spans_from_biluo_tags {#spans_from_biluo_tags tag="function" new="2.1"}
|
||
|
||
Encode per-token tags following the [BILUO scheme](/api/annotation#biluo) into
|
||
[`Span`](/api/span) objects. This can be used to create entity spans from
|
||
token-based tags, e.g. to overwrite the `doc.ents`.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.gold import spans_from_biluo_tags
|
||
>
|
||
> doc = nlp("I like London.")
|
||
> tags = ["O", "O", "U-LOC", "O"]
|
||
> doc.ents = spans_from_biluo_tags(doc, tags)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `doc` | `Doc` | The document that the BILUO tags refer to. |
|
||
| `entities` | iterable | A sequence of [BILUO](/api/annotation#biluo) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. |
|
||
| **RETURNS** | list | A sequence of `Span` objects with added entity labels. |
|