mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			330 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			330 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| title: Vocab
 | ||
| teaser: A storage class for vocabulary and other data shared across a language
 | ||
| tag: class
 | ||
| source: spacy/vocab.pyx
 | ||
| ---
 | ||
| 
 | ||
| The `Vocab` object provides a lookup table that allows you to access
 | ||
| [`Lexeme`](/api/lexeme) objects, as well as the
 | ||
| [`StringStore`](/api/stringstore). It also owns underlying C-data that is shared
 | ||
| between `Doc` objects.
 | ||
| 
 | ||
| ## Vocab.\_\_init\_\_ {#init tag="method"}
 | ||
| 
 | ||
| Create the vocabulary.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.vocab import Vocab
 | ||
| > vocab = Vocab(strings=["hello", "world"])
 | ||
| > ```
 | ||
| 
 | ||
| | Name                                        | Description                                                                                                                                             |
 | ||
| | ------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `lex_attr_getters`                          | A dictionary mapping attribute IDs to functions to compute them. Defaults to `None`. ~~Optional[Dict[str, Callable[[str], Any]]]~~                      |
 | ||
| | `strings`                                   | A [`StringStore`](/api/stringstore) that maps strings to hash values, and vice versa, or a list of strings. ~~Union[List[str], StringStore]~~           |
 | ||
| | `lookups`                                   | A [`Lookups`](/api/lookups) that stores the `lexeme_norm` and other large lookup tables. Defaults to `None`. ~~Optional[Lookups]~~                      |
 | ||
| | `oov_prob`                                  | The default OOV probability. Defaults to `-20.0`. ~~float~~                                                                                             |
 | ||
| | `vectors_name` <Tag variant="new">2.2</Tag> | A name to identify the vectors table. ~~str~~                                                                                                           |
 | ||
| | `writing_system`                            | A dictionary describing the language's writing system. Typically provided by [`Language.Defaults`](/api/language#defaults). ~~Dict[str, Any]~~          |
 | ||
| | `get_noun_chunks`                           | A function that yields base noun phrases, used for [`Doc.noun_chunks`](/ap/doc#noun_chunks). ~~Optional[Callable[[Union[Doc, Span], Iterator[Span]]]]~~ |
 | ||
| 
 | ||
| ## Vocab.\_\_len\_\_ {#len tag="method"}
 | ||
| 
 | ||
| Get the current number of lexemes in the vocabulary.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > doc = nlp("This is a sentence.")
 | ||
| > assert len(nlp.vocab) > 0
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                      |
 | ||
| | ----------- | ------------------------------------------------ |
 | ||
| | **RETURNS** | The number of lexemes in the vocabulary. ~~int~~ |
 | ||
| 
 | ||
| ## Vocab.\_\_getitem\_\_ {#getitem tag="method"}
 | ||
| 
 | ||
| Retrieve a lexeme, given an int ID or a string. If a previously unseen string is
 | ||
| given, a new lexeme is created and stored.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > apple = nlp.vocab.strings["apple"]
 | ||
| > assert nlp.vocab[apple] == nlp.vocab["apple"]
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                  |
 | ||
| | -------------- | ------------------------------------------------------------ |
 | ||
| | `id_or_string` | The hash value of a word, or its string. ~~Union[int, str]~~ |
 | ||
| | **RETURNS**    | The lexeme indicated by the given ID. ~~Lexeme~~             |
 | ||
| 
 | ||
| ## Vocab.\_\_iter\_\_ {#iter tag="method"}
 | ||
| 
 | ||
| Iterate over the lexemes in the vocabulary.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > stop_words = (lex for lex in nlp.vocab if lex.is_stop)
 | ||
| > ```
 | ||
| 
 | ||
| | Name       | Description                            |
 | ||
| | ---------- | -------------------------------------- |
 | ||
| | **YIELDS** | An entry in the vocabulary. ~~Lexeme~~ |
 | ||
| 
 | ||
| ## Vocab.\_\_contains\_\_ {#contains tag="method"}
 | ||
| 
 | ||
| Check whether the string has an entry in the vocabulary. To get the ID for a
 | ||
| given string, you need to look it up in
 | ||
| [`vocab.strings`](/api/vocab#attributes).
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > apple = nlp.vocab.strings["apple"]
 | ||
| > oov = nlp.vocab.strings["dskfodkfos"]
 | ||
| > assert apple in nlp.vocab
 | ||
| > assert oov not in nlp.vocab
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                 |
 | ||
| | ----------- | ----------------------------------------------------------- |
 | ||
| | `string`    | The ID string. ~~str~~                                      |
 | ||
| | **RETURNS** | Whether the string has an entry in the vocabulary. ~~bool~~ |
 | ||
| 
 | ||
| ## Vocab.add_flag {#add_flag tag="method"}
 | ||
| 
 | ||
| Set a new boolean flag to words in the vocabulary. The `flag_getter` function
 | ||
| will be called over the words currently in the vocab, and then applied to new
 | ||
| words as they occur. You'll then be able to access the flag value on each token,
 | ||
| using `token.check_flag(flag_id)`.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > def is_my_product(text):
 | ||
| >     products = ["spaCy", "Thinc", "displaCy"]
 | ||
| >     return text in products
 | ||
| >
 | ||
| > MY_PRODUCT = nlp.vocab.add_flag(is_my_product)
 | ||
| > doc = nlp("I like spaCy")
 | ||
| > assert doc[2].check_flag(MY_PRODUCT) == True
 | ||
| > ```
 | ||
| 
 | ||
| | Name          | Description                                                                                                                                                 |
 | ||
| | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `flag_getter` | A function that takes the lexeme text and returns the boolean flag value. ~~Callable[[str], bool]~~                                                         |
 | ||
| | `flag_id`     | An integer between `1` and `63` (inclusive), specifying the bit at which the flag will be stored. If `-1`, the lowest available bit will be chosen. ~~int~~ |
 | ||
| | **RETURNS**   | The integer ID by which the flag value can be checked. ~~int~~                                                                                              |
 | ||
| 
 | ||
| ## Vocab.reset_vectors {#reset_vectors tag="method" new="2"}
 | ||
| 
 | ||
| Drop the current vector table. Because all vectors must be the same width, you
 | ||
| have to call this to change the size of the vectors. Only one of the `width` and
 | ||
| `shape` keyword arguments can be specified.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > nlp.vocab.reset_vectors(width=300)
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description            |
 | ||
| | -------------- | ---------------------- |
 | ||
| | _keyword-only_ |                        |
 | ||
| | `width`        | The new width. ~~int~~ |
 | ||
| | `shape`        | The new shape. ~~int~~ |
 | ||
| 
 | ||
| ## Vocab.prune_vectors {#prune_vectors tag="method" new="2"}
 | ||
| 
 | ||
| Reduce the current vector table to `nr_row` unique entries. Words mapped to the
 | ||
| discarded vectors will be remapped to the closest vector among those remaining.
 | ||
| For example, suppose the original table had vectors for the words:
 | ||
| `['sat', 'cat', 'feline', 'reclined']`. If we prune the vector table to, two
 | ||
| rows, we would discard the vectors for "feline" and "reclined". These words
 | ||
| would then be remapped to the closest remaining vector – so "feline" would have
 | ||
| the same vector as "cat", and "reclined" would have the same vector as "sat".
 | ||
| The similarities are judged by cosine. The original vectors may be large, so the
 | ||
| cosines are calculated in minibatches, to reduce memory usage.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > nlp.vocab.prune_vectors(10000)
 | ||
| > assert len(nlp.vocab.vectors) <= 1000
 | ||
| > ```
 | ||
| 
 | ||
| | Name         | Description                                                                                                                                                                                                                  |
 | ||
| | ------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `nr_row`     | The number of rows to keep in the vector table. ~~int~~                                                                                                                                                                      |
 | ||
| | `batch_size` | Batch of vectors for calculating the similarities. Larger batch sizes might be faster, while temporarily requiring more memory. ~~int~~                                                                                      |
 | ||
| | **RETURNS**  | A dictionary keyed by removed words mapped to `(string, score)` tuples, where `string` is the entry the removed word was mapped to, and `score` the similarity score between the two words. ~~Dict[str, Tuple[str, float]]~~ |
 | ||
| 
 | ||
| ## Vocab.get_vector {#get_vector tag="method" new="2"}
 | ||
| 
 | ||
| Retrieve a vector for a word in the vocabulary. Words can be looked up by string
 | ||
| or hash value. If no vectors data is loaded, a `ValueError` is raised. If `minn`
 | ||
| is defined, then the resulting vector uses [FastText](https://fasttext.cc/)'s
 | ||
| subword features by average over ngrams of `orth` (introduced in spaCy `v2.1`).
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > nlp.vocab.get_vector("apple")
 | ||
| > nlp.vocab.get_vector("apple", minn=1, maxn=5)
 | ||
| > ```
 | ||
| 
 | ||
| | Name                                | Description                                                                                                            |
 | ||
| | ----------------------------------- | ---------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `orth`                              | The hash value of a word, or its unicode string. ~~Union[int, str]~~                                                   |
 | ||
| | `minn` <Tag variant="new">2.1</Tag> | Minimum n-gram length used for FastText's ngram computation. Defaults to the length of `orth`. ~~int~~                 |
 | ||
| | `maxn` <Tag variant="new">2.1</Tag> | Maximum n-gram length used for FastText's ngram computation. Defaults to the length of `orth`. ~~int~~                 |
 | ||
| | **RETURNS**                         | A word vector. Size and shape are determined by the `Vocab.vectors` instance. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
 | ||
| 
 | ||
| ## Vocab.set_vector {#set_vector tag="method" new="2"}
 | ||
| 
 | ||
| Set a vector for a word in the vocabulary. Words can be referenced by by string
 | ||
| or hash value.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > nlp.vocab.set_vector("apple", array([...]))
 | ||
| > ```
 | ||
| 
 | ||
| | Name     | Description                                                          |
 | ||
| | -------- | -------------------------------------------------------------------- |
 | ||
| | `orth`   | The hash value of a word, or its unicode string. ~~Union[int, str]~~ |
 | ||
| | `vector` | The vector to set. ~~numpy.ndarray[ndim=1, dtype=float32]~~          |
 | ||
| 
 | ||
| ## Vocab.has_vector {#has_vector tag="method" new="2"}
 | ||
| 
 | ||
| Check whether a word has a vector. Returns `False` if no vectors are loaded.
 | ||
| Words can be looked up by string or hash value.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > if nlp.vocab.has_vector("apple"):
 | ||
| >     vector = nlp.vocab.get_vector("apple")
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                          |
 | ||
| | ----------- | -------------------------------------------------------------------- |
 | ||
| | `orth`      | The hash value of a word, or its unicode string. ~~Union[int, str]~~ |
 | ||
| | **RETURNS** | Whether the word has a vector. ~~bool~~                              |
 | ||
| 
 | ||
| ## Vocab.to_disk {#to_disk tag="method" new="2"}
 | ||
| 
 | ||
| Save the current state to a directory.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > nlp.vocab.to_disk("/path/to/vocab")
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                                                                |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | ||
| | `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | ||
| | _keyword-only_ |                                                                                                                                            |
 | ||
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | ||
| 
 | ||
| ## Vocab.from_disk {#from_disk tag="method" new="2"}
 | ||
| 
 | ||
| Loads state from a directory. Modifies the object in place and returns it.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.vocab import Vocab
 | ||
| > vocab = Vocab().from_disk("/path/to/vocab")
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                     |
 | ||
| | -------------- | ----------------------------------------------------------------------------------------------- |
 | ||
| | `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | ||
| | _keyword-only_ |                                                                                                 |
 | ||
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | ||
| | **RETURNS**    | The modified `Vocab` object. ~~Vocab~~                                                          |
 | ||
| 
 | ||
| ## Vocab.to_bytes {#to_bytes tag="method"}
 | ||
| 
 | ||
| Serialize the current state to a binary string.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > vocab_bytes = nlp.vocab.to_bytes()
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                 |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------- |
 | ||
| | _keyword-only_ |                                                                                             |
 | ||
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | ||
| | **RETURNS**    | The serialized form of the `Vocab` object. ~~Vocab~~                                        |
 | ||
| 
 | ||
| ## Vocab.from_bytes {#from_bytes tag="method"}
 | ||
| 
 | ||
| Load state from a binary string.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.vocab import Vocab
 | ||
| > vocab_bytes = nlp.vocab.to_bytes()
 | ||
| > vocab = Vocab()
 | ||
| > vocab.from_bytes(vocab_bytes)
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                 |
 | ||
| | -------------- | ------------------------------------------------------------------------------------------- |
 | ||
| | `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | ||
| | _keyword-only_ |                                                                                             |
 | ||
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | ||
| | **RETURNS**    | The `Vocab` object. ~~Vocab~~                                                               |
 | ||
| 
 | ||
| ## Attributes {#attributes}
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > apple_id = nlp.vocab.strings["apple"]
 | ||
| > assert type(apple_id) == int
 | ||
| > PERSON = nlp.vocab.strings["PERSON"]
 | ||
| > assert type(PERSON) == int
 | ||
| > ```
 | ||
| 
 | ||
| | Name                                          | Description                                                                     |
 | ||
| | --------------------------------------------- | ------------------------------------------------------------------------------- |
 | ||
| | `strings`                                     | A table managing the string-to-int mapping. ~~StringStore~~                     |
 | ||
| | `vectors` <Tag variant="new">2</Tag>          | A table associating word IDs to word vectors. ~~Vectors~~                       |
 | ||
| | `vectors_length`                              | Number of dimensions for each word vector. ~~int~~                              |
 | ||
| | `lookups`                                     | The available lookup tables in this vocab. ~~Lookups~~                          |
 | ||
| | `writing_system` <Tag variant="new">2.1</Tag> | A dict with information about the language's writing system. ~~Dict[str, Any]~~ |
 | ||
| 
 | ||
| ## Serialization fields {#serialization-fields}
 | ||
| 
 | ||
| During serialization, spaCy will export several data fields used to restore
 | ||
| different aspects of the object. If needed, you can exclude them from
 | ||
| serialization by passing in the string names via the `exclude` argument.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > data = vocab.to_bytes(exclude=["strings", "vectors"])
 | ||
| > vocab.from_disk("./vocab", exclude=["strings"])
 | ||
| > ```
 | ||
| 
 | ||
| | Name      | Description                                           |
 | ||
| | --------- | ----------------------------------------------------- |
 | ||
| | `strings` | The strings in the [`StringStore`](/api/stringstore). |
 | ||
| | `lexemes` | The lexeme data.                                      |
 | ||
| | `vectors` | The word vectors, if available.                       |
 | ||
| | `lookups` | The lookup tables, if available.                      |
 |