mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-29 11:26:28 +03:00
264 lines
14 KiB
Markdown
264 lines
14 KiB
Markdown
---
|
|
title: Lemmatizer
|
|
tag: class
|
|
source: spacy/pipeline/lemmatizer.py
|
|
new: 3
|
|
teaser: 'Pipeline component for lemmatization'
|
|
api_base_class: /api/pipe
|
|
api_string_name: lemmatizer
|
|
api_trainable: false
|
|
---
|
|
|
|
## Config and implementation
|
|
|
|
The default config is defined by the pipeline component factory and describes
|
|
how the component should be configured. You can override its settings via the
|
|
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
|
[`config.cfg` for training](/usage/training#config).
|
|
|
|
For examples of the lookups data formats used by the lookup and rule-based
|
|
lemmatizers, see the
|
|
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) repo.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> config = {"mode": "rule"}
|
|
> nlp.add_pipe("lemmatizer", config=config)
|
|
> ```
|
|
|
|
| Setting | Type | Description | Default |
|
|
| ----------- | ------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- |
|
|
| `mode` | str | The lemmatizer mode, e.g. "lookup" or "rule". | `"lookup"` |
|
|
| `lookups` | [`Lookups`](/api/lookups) | The lookups object containing the tables such as `"lemma_rules"`, `"lemma_index"`, `"lemma_exc"` and `"lemma_lookup"`. If `None`, default tables are loaded from `spacy-lookups-data`. | `None` |
|
|
| `overwrite` | bool | Whether to overwrite existing lemmas. | `False` |
|
|
| `model` | [`Model`](https://thinc.ai/docs/api-model) | **Not yet implemented:** the model to use. | `None` |
|
|
|
|
```python
|
|
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/lemmatizer.py
|
|
```
|
|
|
|
## Lemmatizer.\_\_init\_\_ {#init tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> # Construction via add_pipe with default model
|
|
> lemmatizer = nlp.add_pipe("lemmatizer")
|
|
>
|
|
> # Construction via add_pipe with custom settings
|
|
> config = {"mode": "rule", overwrite=True}
|
|
> lemmatizer = nlp.add_pipe("lemmatizer", config=config)
|
|
> ```
|
|
|
|
Create a new pipeline instance. In your application, you would normally use a
|
|
shortcut for this and instantiate the component using its string name and
|
|
[`nlp.add_pipe`](/api/language#add_pipe).
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | ------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `vocab` | [`Vocab`](/api/vocab) | The vocab. |
|
|
| `model` | [`Model`](https://thinc.ai/docs/api-model) | A model (not yet implemented). |
|
|
| `name` | str | String name of the component instance. Used to add entries to the `losses` during training. |
|
|
| _keyword-only_ | | |
|
|
| mode | str | The lemmatizer mode, e.g. "lookup" or "rule". Defaults to "lookup". |
|
|
| lookups | [`Lookups`](/api/lookups) | A lookups object containing the tables such as "lemma_rules", "lemma_index", "lemma_exc" and "lemma_lookup". Defaults to `None`. |
|
|
| overwrite | bool | Whether to overwrite existing lemmas. |
|
|
|
|
## Lemmatizer.\_\_call\_\_ {#call tag="method"}
|
|
|
|
Apply the pipe to one document. The document is modified in place, and returned.
|
|
This usually happens under the hood when the `nlp` object is called on a text
|
|
and all pipeline components are applied to the `Doc` in order.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> doc = nlp("This is a sentence.")
|
|
> lemmatizer = nlp.add_pipe("lemmatizer")
|
|
> # This usually happens under the hood
|
|
> processed = lemmatizer(doc)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ----- | ------------------------ |
|
|
| `doc` | `Doc` | The document to process. |
|
|
| **RETURNS** | `Doc` | The processed document. |
|
|
|
|
## Lemmatizer.pipe {#pipe tag="method"}
|
|
|
|
Apply the pipe to a stream of documents. This usually happens under the hood
|
|
when the `nlp` object is called on a text and all pipeline components are
|
|
applied to the `Doc` in order.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> lemmatizer = nlp.add_pipe("lemmatizer")
|
|
> for doc in lemmatizer.pipe(docs, batch_size=50):
|
|
> pass
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | --------------- | ------------------------------------------------------ |
|
|
| `stream` | `Iterable[Doc]` | A stream of documents. |
|
|
| _keyword-only_ | | |
|
|
| `batch_size` | int | The number of texts to buffer. Defaults to `128`. |
|
|
| **YIELDS** | `Doc` | Processed documents in the order of the original text. |
|
|
|
|
## Lemmatizer.lookup_lemmatize {#lookup_lemmatize tag="method"}
|
|
|
|
Lemmatize a token using a lookup-based approach. If no lemma is found, the
|
|
original string is returned. Languages can provide a
|
|
[lookup table](/usage/adding-languages#lemmatizer) via the `Lookups`.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | --------------------- | ------------------------------------- |
|
|
| `token` | [`Token`](/api/token) | The token to lemmatize. |
|
|
| **RETURNS** | `List[str]` | A list containing one or more lemmas. |
|
|
|
|
## Lemmatizer.rule_lemmatize {#rule_lemmatize tag="method"}
|
|
|
|
Lemmatize a token using a rule-based approach. Typically relies on POS tags.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | --------------------- | ------------------------------------- |
|
|
| `token` | [`Token`](/api/token) | The token to lemmatize. |
|
|
| **RETURNS** | `List[str]` | A list containing one or more lemmas. |
|
|
|
|
## Lemmatizer.is_base_form {#is_base_form tag="method"}
|
|
|
|
Check whether we're dealing with an uninflected paradigm, so we can avoid
|
|
lemmatization entirely.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | --------------------- | ------------------------------------------------------------------------------------------------------- |
|
|
| `token` | [`Token`](/api/token) | The token to analyze. |
|
|
| **RETURNS** | bool | Whether the token's attributes (e.g., part-of-speech tag, morphological features) describe a base form. |
|
|
|
|
## Lemmatizer.get_lookups_config {#get_lookups_config tag="classmethod"}
|
|
|
|
Returns the lookups configuration settings for a given mode for use in
|
|
[`Lemmatizer.load_lookups`](#load_lookups).
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ---- | ------------------------------------------------- |
|
|
| `mode` | str | The lemmatizer mode. |
|
|
| **RETURNS** | dict | The lookups configuration settings for this mode. |
|
|
|
|
## Lemmatizer.load_lookups {#load_lookups tag="classmethod"}
|
|
|
|
Load and validate lookups tables. If the provided lookups is `None`, load the
|
|
default lookups tables according to the language and mode settings. Confirm that
|
|
all required tables for the language and mode are present.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ------------------------- | ---------------------------------------------------------------------------- |
|
|
| `lang` | str | The language. |
|
|
| `mode` | str | The lemmatizer mode. |
|
|
| `lookups` | [`Lookups`](/api/lookups) | The provided lookups, may be `None` if the default lookups should be loaded. |
|
|
| **RETURNS** | [`Lookups`](/api/lookups) | The lookups object. |
|
|
|
|
## Lemmatizer.to_disk {#to_disk tag="method"}
|
|
|
|
Serialize the pipe to disk.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> lemmatizer = nlp.add_pipe("lemmatizer")
|
|
> lemmatizer.to_disk("/path/to/lemmatizer")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | --------------- | --------------------------------------------------------------------------------------------------------------------- |
|
|
| `path` | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
|
| _keyword-only_ | | |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
|
|
## Lemmatizer.from_disk {#from_disk tag="method"}
|
|
|
|
Load the pipe from disk. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> lemmatizer = nlp.add_pipe("lemmatizer")
|
|
> lemmatizer.from_disk("/path/to/lemmatizer")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | --------------- | -------------------------------------------------------------------------- |
|
|
| `path` | str / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
|
|
| _keyword-only_ | | |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | `Lemmatizer` | The modified `Lemmatizer` object. |
|
|
|
|
## Lemmatizer.to_bytes {#to_bytes tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> lemmatizer = nlp.add_pipe("lemmatizer")
|
|
> lemmatizer_bytes = lemmatizer.to_bytes()
|
|
> ```
|
|
|
|
Serialize the pipe to a bytestring.
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | --------------- | ------------------------------------------------------------------------- |
|
|
| _keyword-only_ | | |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | bytes | The serialized form of the `Lemmatizer` object. |
|
|
|
|
## Lemmatizer.from_bytes {#from_bytes tag="method"}
|
|
|
|
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> lemmatizer_bytes = lemmatizer.to_bytes()
|
|
> lemmatizer = nlp.add_pipe("lemmatizer")
|
|
> lemmatizer.from_bytes(lemmatizer_bytes)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | --------------- | ------------------------------------------------------------------------- |
|
|
| `bytes_data` | bytes | The data to load from. |
|
|
| _keyword-only_ | | |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | `Lemmatizer` | The `Lemmatizer` object. |
|
|
|
|
## Lemmatizer.mode {#mode tag="property"}
|
|
|
|
The lemmatizer mode.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ----- | -------------------- |
|
|
| **RETURNS** | `str` | The lemmatizer mode. |
|
|
|
|
## Attributes {#attributes}
|
|
|
|
| Name | Type | Description |
|
|
| --------- | --------------------------------- | ------------------- |
|
|
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
|
| `lookups` | [`Lookups`](/api/lookups) | The lookups object. |
|
|
|
|
## Serialization fields {#serialization-fields}
|
|
|
|
During serialization, spaCy will export several data fields used to restore
|
|
different aspects of the object. If needed, you can exclude them from
|
|
serialization by passing in the string names via the `exclude` argument.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> data = lemmatizer.to_disk("/path", exclude=["vocab"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| --------- | ---------------------------------------------------- |
|
|
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
|
| `lookups` | The lookups. You usually don't want to exclude this. |
|