spaCy/spacy/tests/pipeline/test_textcat.py
Sofie Van Landeghem eb56377799
Fix overfitting test (#6011)
* remove unused MORPH_RULES

* fix textcat architecture in overfitting test
2020-09-02 13:07:41 +02:00

153 lines
5.8 KiB
Python

import pytest
import random
import numpy.random
from thinc.api import fix_random_seed
from spacy import util
from spacy.lang.en import English
from spacy.language import Language
from spacy.pipeline import TextCategorizer
from spacy.tokens import Doc
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
from ..util import make_tempdir
from ...gold import Example
TRAIN_DATA = [
("I'm so happy.", {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}),
("I'm so angry", {"cats": {"POSITIVE": 0.0, "NEGATIVE": 1.0}}),
]
@pytest.mark.skip(reason="Test is flakey when run with others")
def test_simple_train():
nlp = Language()
textcat = nlp.add_pipe("textcat")
textcat.add_label("answer")
nlp.begin_training()
for i in range(5):
for text, answer in [
("aaaa", 1.0),
("bbbb", 0),
("aa", 1.0),
("bbbbbbbbb", 0.0),
("aaaaaa", 1),
]:
nlp.update((text, {"cats": {"answer": answer}}))
doc = nlp("aaa")
assert "answer" in doc.cats
assert doc.cats["answer"] >= 0.5
@pytest.mark.skip(reason="Test is flakey when run with others")
def test_textcat_learns_multilabel():
random.seed(5)
numpy.random.seed(5)
docs = []
nlp = Language()
letters = ["a", "b", "c"]
for w1 in letters:
for w2 in letters:
cats = {letter: float(w2 == letter) for letter in letters}
docs.append((Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3), cats))
random.shuffle(docs)
textcat = TextCategorizer(nlp.vocab, width=8)
for letter in letters:
textcat.add_label(letter)
optimizer = textcat.begin_training(lambda: [])
for i in range(30):
losses = {}
examples = [Example.from_dict(doc, {"cats": cats}) for doc, cat in docs]
textcat.update(examples, sgd=optimizer, losses=losses)
random.shuffle(docs)
for w1 in letters:
for w2 in letters:
doc = Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3)
truth = {letter: w2 == letter for letter in letters}
textcat(doc)
for cat, score in doc.cats.items():
if not truth[cat]:
assert score < 0.5
else:
assert score > 0.5
def test_label_types():
nlp = Language()
textcat = nlp.add_pipe("textcat")
textcat.add_label("answer")
with pytest.raises(ValueError):
textcat.add_label(9)
def test_overfitting_IO():
# Simple test to try and quickly overfit the textcat component - ensuring the ML models work correctly
fix_random_seed(0)
nlp = English()
# Set exclusive labels
textcat = nlp.add_pipe("textcat", config={"model": {"exclusive_classes": True}})
train_examples = []
for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
for label, value in annotations.get("cats").items():
textcat.add_label(label)
optimizer = nlp.begin_training()
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["textcat"] < 0.01
# test the trained model
test_text = "I am happy."
doc = nlp(test_text)
cats = doc.cats
assert cats["POSITIVE"] > 0.9
assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.001)
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
cats2 = doc2.cats
assert cats2["POSITIVE"] > 0.9
assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.001)
# Test scoring
scores = nlp.evaluate(train_examples, scorer_cfg={"positive_label": "POSITIVE"})
assert scores["cats_micro_f"] == 1.0
assert scores["cats_score"] == 1.0
assert "cats_score_desc" in scores
# fmt: off
@pytest.mark.parametrize(
"textcat_config",
[
{"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False},
{"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False},
{"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "ngram_size": 3, "no_output_layer": True},
{"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "ngram_size": 2, "no_output_layer": True},
{"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "ngram_size": 1, "pretrained_vectors": False, "width": 64, "conv_depth": 2, "embed_size": 2000, "window_size": 2, "dropout": None},
{"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": True, "ngram_size": 5, "pretrained_vectors": False, "width": 128, "conv_depth": 2, "embed_size": 2000, "window_size": 1, "dropout": None},
{"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": True, "ngram_size": 2, "pretrained_vectors": False, "width": 32, "conv_depth": 3, "embed_size": 500, "window_size": 3, "dropout": None},
{"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True},
{"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False},
],
)
# fmt: on
def test_textcat_configs(textcat_config):
pipe_config = {"model": textcat_config}
nlp = English()
textcat = nlp.add_pipe("textcat", config=pipe_config)
train_examples = []
for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
for label, value in annotations.get("cats").items():
textcat.add_label(label)
optimizer = nlp.begin_training()
for i in range(5):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)