* Update sent_starts in Example.from_dict Update `sent_starts` for `Example.from_dict` so that `Optional[bool]` values have the same meaning as for `Token.is_sent_start`. Use `Optional[bool]` as the type for sent start values in the docs. * Use helper function for conversion to ternary ints
41 KiB
title | tag | teaser | source |
---|---|---|---|
Doc | class | A container for accessing linguistic annotations. | spacy/tokens/doc.pyx |
A Doc
is a sequence of Token
objects. Access sentences and
named entities, export annotations to numpy arrays, losslessly serialize to
compressed binary strings. The Doc
object holds an array of
TokenC
structs. The Python-level Token
and
Span
objects are views of this array, i.e. they don't own the
data themselves.
Doc.__init__
Construct a Doc
object. The most common way to get a Doc
object is via the
nlp
object.
Example
# Construction 1 doc = nlp("Some text") # Construction 2 from spacy.tokens import Doc words = ["hello", "world", "!"] spaces = [True, False, False] doc = Doc(nlp.vocab, words=words, spaces=spaces)
Name | Description |
---|---|
vocab |
A storage container for lexical types. |
words |
A list of strings to add to the container. |
spaces |
A list of boolean values indicating whether each word has a subsequent space. Must have the same length as words , if specified. Defaults to a sequence of True . |
keyword-only | |
user\_data |
Optional extra data to attach to the Doc. |
tags 3 |
A list of strings, of the same length as words , to assign as token.tag for each word. Defaults to None . |
pos 3 |
A list of strings, of the same length as words , to assign as token.pos for each word. Defaults to None . |
morphs 3 |
A list of strings, of the same length as words , to assign as token.morph for each word. Defaults to None . |
lemmas 3 |
A list of strings, of the same length as words , to assign as token.lemma for each word. Defaults to None . |
heads 3 |
A list of values, of the same length as words , to assign as the head for each word. Head indices are the absolute position of the head in the Doc . Defaults to None . |
deps 3 |
A list of strings, of the same length as words , to assign as token.dep for each word. Defaults to None . |
sent_starts 3 |
A list of values, of the same length as words , to assign as token.is_sent_start . Will be overridden by heads if heads is provided. Defaults to None . |
ents 3 |
A list of strings, of the same length of words , to assign the token-based IOB tag. Defaults to None . |
Doc.__getitem__
Get a Token
object at position i
, where i
is an integer.
Negative indexing is supported, and follows the usual Python semantics, i.e.
doc[-2]
is doc[len(doc) - 2]
.
Example
doc = nlp("Give it back! He pleaded.") assert doc[0].text == "Give" assert doc[-1].text == "." span = doc[1:3] assert span.text == "it back"
Name | Description |
---|---|
i |
The index of the token. |
RETURNS | The token at doc[i] . |
Get a Span
object, starting at position start
(token index) and
ending at position end
(token index). For instance, doc[2:5]
produces a span
consisting of tokens 2, 3 and 4. Stepped slices (e.g. doc[start : end : step]
)
are not supported, as Span
objects must be contiguous (cannot have gaps). You
can use negative indices and open-ended ranges, which have their normal Python
semantics.
Name | Description |
---|---|
start_end |
The slice of the document to get. |
RETURNS | The span at doc[start:end] . |
Doc.__iter__
Iterate over Token
objects, from which the annotations can be easily accessed.
Example
doc = nlp("Give it back") assert [t.text for t in doc] == ["Give", "it", "back"]
This is the main way of accessing Token
objects, which are the
main way annotations are accessed from Python. If faster-than-Python speeds are
required, you can instead access the annotations as a numpy array, or access the
underlying C data directly from Cython.
Name | Description |
---|---|
YIELDS | A Token object. |
Doc.__len__
Get the number of tokens in the document.
Example
doc = nlp("Give it back! He pleaded.") assert len(doc) == 7
Name | Description |
---|---|
RETURNS | The number of tokens in the document. |
Doc.set_extension
Define a custom attribute on the Doc
which becomes available via Doc._
. For
details, see the documentation on
custom attributes.
Example
from spacy.tokens import Doc city_getter = lambda doc: any(city in doc.text for city in ("New York", "Paris", "Berlin")) Doc.set_extension("has_city", getter=city_getter) doc = nlp("I like New York") assert doc._.has_city
Name | Description |
---|---|
name |
Name of the attribute to set by the extension. For example, "my_attr" will be available as doc._.my_attr . |
default |
Optional default value of the attribute if no getter or method is defined. |
method |
Set a custom method on the object, for example doc._.compare(other_doc) . |
getter |
Getter function that takes the object and returns an attribute value. Is called when the user accesses the ._ attribute. |
setter |
Setter function that takes the Doc and a value, and modifies the object. Is called when the user writes to the Doc._ attribute. |
force |
Force overwriting existing attribute. |
Doc.get_extension
Look up a previously registered extension by name. Returns a 4-tuple
(default, method, getter, setter)
if the extension is registered. Raises a
KeyError
otherwise.
Example
from spacy.tokens import Doc Doc.set_extension("has_city", default=False) extension = Doc.get_extension("has_city") assert extension == (False, None, None, None)
Name | Description |
---|---|
name |
Name of the extension. |
RETURNS | A (default, method, getter, setter) tuple of the extension. |
Doc.has_extension
Check whether an extension has been registered on the Doc
class.
Example
from spacy.tokens import Doc Doc.set_extension("has_city", default=False) assert Doc.has_extension("has_city")
Name | Description |
---|---|
name |
Name of the extension to check. |
RETURNS | Whether the extension has been registered. |
Doc.remove_extension
Remove a previously registered extension.
Example
from spacy.tokens import Doc Doc.set_extension("has_city", default=False) removed = Doc.remove_extension("has_city") assert not Doc.has_extension("has_city")
Name | Description |
---|---|
name |
Name of the extension. |
RETURNS | A (default, method, getter, setter) tuple of the removed extension. |
Doc.char_span
Create a Span
object from the slice doc.text[start_idx:end_idx]
. Returns
None
if the character indices don't map to a valid span using the default
alignment mode `"strict".
Example
doc = nlp("I like New York") span = doc.char_span(7, 15, label="GPE") assert span.text == "New York"
Name | Description |
---|---|
start |
The index of the first character of the span. |
end |
The index of the last character after the span. ~int~~ |
label |
A label to attach to the span, e.g. for named entities. |
kb_id 2.2 |
An ID from a knowledge base to capture the meaning of a named entity. |
vector |
A meaning representation of the span. |
alignment_mode |
How character indices snap to token boundaries. Options: "strict" (no snapping), "contract" (span of all tokens completely within the character span), "expand" (span of all tokens at least partially covered by the character span). Defaults to "strict" . |
RETURNS | The newly constructed object or None . |
Doc.set_ents
Set the named entities in the document.
Example
from spacy.tokens import Span doc = nlp("Mr. Best flew to New York on Saturday morning.") doc.set_ents([Span(doc, 0, 2, "PERSON")]) ents = list(doc.ents) assert ents[0].label_ == "PERSON" assert ents[0].text == "Mr. Best"
Name | Description |
---|---|
entities |
Spans with labels to set as entities. |
keyword-only | |
blocked |
Spans to set as "blocked" (never an entity) for spacy's built-in NER component. Other components may ignore this setting. |
missing |
Spans with missing/unknown entity information. |
outside |
Spans outside of entities (O in IOB). |
default |
How to set entity annotation for tokens outside of any provided spans. Options: "blocked" , "missing" , "outside" and "unmodified" (preserve current state). Defaults to "outside" . |
Doc.similarity
Make a semantic similarity estimate. The default estimate is cosine similarity using an average of word vectors.
Example
apples = nlp("I like apples") oranges = nlp("I like oranges") apples_oranges = apples.similarity(oranges) oranges_apples = oranges.similarity(apples) assert apples_oranges == oranges_apples
Name | Description |
---|---|
other |
The object to compare with. By default, accepts Doc , Span , Token and Lexeme objects. |
RETURNS | A scalar similarity score. Higher is more similar. |
Doc.count_by
Count the frequencies of a given attribute. Produces a dict of
{attr (int): count (ints)}
frequencies, keyed by the values of the given
attribute ID.
Example
from spacy.attrs import ORTH doc = nlp("apple apple orange banana") assert doc.count_by(ORTH) == {7024: 1, 119552: 1, 2087: 2} doc.to_array([ORTH]) # array([[11880], [11880], [7561], [12800]])
Name | Description |
---|---|
attr_id |
The attribute ID. |
RETURNS | A dictionary mapping attributes to integer counts. |
Doc.get_lca_matrix
Calculates the lowest common ancestor matrix for a given Doc
. Returns LCA
matrix containing the integer index of the ancestor, or -1
if no common
ancestor is found, e.g. if span excludes a necessary ancestor.
Example
doc = nlp("This is a test") matrix = doc.get_lca_matrix() # array([[0, 1, 1, 1], [1, 1, 1, 1], [1, 1, 2, 3], [1, 1, 3, 3]], dtype=int32)
Name | Description |
---|---|
RETURNS | The lowest common ancestor matrix of the Doc . |
Doc.has_annotation
Check whether the doc contains annotation on a token attribute.
This method replaces the previous boolean attributes like Doc.is_tagged
,
Doc.is_parsed
or Doc.is_sentenced
.
doc = nlp("This is a text")
- assert doc.is_parsed
+ assert doc.has_annotation("DEP")
Name | Description |
---|---|
attr |
The attribute string name or int ID. |
keyword-only | |
require_complete |
Whether to check that the attribute is set on every token in the doc. Defaults to False . |
RETURNS | Whether specified annotation is present in the doc. |
Doc.to_array
Export given token attributes to a numpy ndarray
. If attr_ids
is a sequence
of M
attributes, the output array will be of shape (N, M)
, where N
is the
length of the Doc
(in tokens). If attr_ids
is a single attribute, the output
shape will be (N,)
. You can specify attributes by integer ID (e.g.
spacy.attrs.LEMMA
) or string name (e.g. "LEMMA" or "lemma"). The values will
be 64-bit integers.
Returns a 2D array with one row per token and one column per attribute (when
attr_ids
is a list), or as a 1D numpy array, with one item per attribute (when
attr_ids
is a single value).
Example
from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA doc = nlp(text) # All strings mapped to integers, for easy export to numpy np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA]) np_array = doc.to_array("POS")
Name | Description |
---|---|
attr_ids |
A list of attributes (int IDs or string names) or a single attribute (int ID or string name). |
RETURNS | The exported attributes as a numpy array. |
Doc.from_array
Load attributes from a numpy array. Write to a Doc
object, from an (M, N)
array of attributes.
Example
from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA from spacy.tokens import Doc doc = nlp("Hello world!") np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA]) doc2 = Doc(doc.vocab, words=[t.text for t in doc]) doc2.from_array([LOWER, POS, ENT_TYPE, IS_ALPHA], np_array) assert doc[0].pos_ == doc2[0].pos_
Name | Description |
---|---|
attrs |
A list of attribute ID ints. |
array |
The attribute values to load. |
exclude |
String names of serialization fields to exclude. |
RETURNS | The Doc itself. |
Doc.from_docs
Concatenate multiple Doc
objects to form a new one. Raises an error if the
Doc
objects do not all share the same Vocab
.
Example
from spacy.tokens import Doc texts = ["London is the capital of the United Kingdom.", "The River Thames flows through London.", "The famous Tower Bridge crosses the River Thames."] docs = list(nlp.pipe(texts)) c_doc = Doc.from_docs(docs) assert str(c_doc) == " ".join(texts) assert len(list(c_doc.sents)) == len(docs) assert [str(ent) for ent in c_doc.ents] == \ [str(ent) for doc in docs for ent in doc.ents]
Name | Description |
---|---|
docs |
A list of Doc objects. |
ensure_whitespace |
Insert a space between two adjacent docs whenever the first doc does not end in whitespace. |
attrs |
Optional list of attribute ID ints or attribute name strings. |
RETURNS | The new Doc object that is containing the other docs or None , if docs is empty or None . |
Doc.to_disk
Save the current state to a directory.
Example
doc.to_disk("/path/to/doc")
Name | Description |
---|---|
path |
A path to a directory, which will be created if it doesn't exist. Paths may be either strings or Path -like objects. |
keyword-only | |
exclude |
String names of serialization fields to exclude. |
Doc.from_disk
Loads state from a directory. Modifies the object in place and returns it.
Example
from spacy.tokens import Doc from spacy.vocab import Vocab doc = Doc(Vocab()).from_disk("/path/to/doc")
Name | Description |
---|---|
path |
A path to a directory. Paths may be either strings or Path -like objects. |
keyword-only | |
exclude |
String names of serialization fields to exclude. |
RETURNS | The modified Doc object. |
Doc.to_bytes
Serialize, i.e. export the document contents to a binary string.
Example
doc = nlp("Give it back! He pleaded.") doc_bytes = doc.to_bytes()
Name | Description |
---|---|
keyword-only | |
exclude |
String names of serialization fields to exclude. |
RETURNS | A losslessly serialized copy of the Doc , including all annotations. |
Doc.from_bytes
Deserialize, i.e. import the document contents from a binary string.
Example
from spacy.tokens import Doc doc = nlp("Give it back! He pleaded.") doc_bytes = doc.to_bytes() doc2 = Doc(doc.vocab).from_bytes(doc_bytes) assert doc.text == doc2.text
Name | Description |
---|---|
data |
The string to load from. |
keyword-only | |
exclude |
String names of serialization fields to exclude. |
RETURNS | The Doc object. |
Doc.retokenize
Context manager to handle retokenization of the Doc
. Modifications to the
Doc
's tokenization are stored, and then made all at once when the context
manager exits. This is much more efficient, and less error-prone. All views of
the Doc
(Span
and Token
) created before the retokenization are
invalidated, although they may accidentally continue to work.
Example
doc = nlp("Hello world!") with doc.retokenize() as retokenizer: retokenizer.merge(doc[0:2])
Name | Description |
---|---|
RETURNS | The retokenizer. |
Retokenizer.merge
Mark a span for merging. The attrs
will be applied to the resulting token (if
they're context-dependent token attributes like LEMMA
or DEP
) or to the
underlying lexeme (if they're context-independent lexical attributes like
LOWER
or IS_STOP
). Writable custom extension attributes can be provided
using the "_"
key and specifying a dictionary that maps attribute names to
values.
Example
doc = nlp("I like David Bowie") with doc.retokenize() as retokenizer: attrs = {"LEMMA": "David Bowie"} retokenizer.merge(doc[2:4], attrs=attrs)
Name | Description |
---|---|
span |
The span to merge. |
attrs |
Attributes to set on the merged token. |
Retokenizer.split
Mark a token for splitting, into the specified orths
. The heads
are required
to specify how the new subtokens should be integrated into the dependency tree.
The list of per-token heads can either be a token in the original document, e.g.
doc[2]
, or a tuple consisting of the token in the original document and its
subtoken index. For example, (doc[3], 1)
will attach the subtoken to the
second subtoken of doc[3]
.
This mechanism allows attaching subtokens to other newly created subtokens,
without having to keep track of the changing token indices. If the specified
head token will be split within the retokenizer block and no subtoken index is
specified, it will default to 0
. Attributes to set on subtokens can be
provided as a list of values. They'll be applied to the resulting token (if
they're context-dependent token attributes like LEMMA
or DEP
) or to the
underlying lexeme (if they're context-independent lexical attributes like
LOWER
or IS_STOP
).
Example
doc = nlp("I live in NewYork") with doc.retokenize() as retokenizer: heads = [(doc[3], 1), doc[2]] attrs = {"POS": ["PROPN", "PROPN"], "DEP": ["pobj", "compound"]} retokenizer.split(doc[3], ["New", "York"], heads=heads, attrs=attrs)
Name | Description |
---|---|
token |
The token to split. |
orths |
The verbatim text of the split tokens. Needs to match the text of the original token. |
heads |
List of token or (token, subtoken) tuples specifying the tokens to attach the newly split subtokens to. |
attrs |
Attributes to set on all split tokens. Attribute names mapped to list of per-token attribute values. |
Doc.ents
The named entities in the document. Returns a tuple of named entity Span
objects, if the entity recognizer has been applied.
Example
doc = nlp("Mr. Best flew to New York on Saturday morning.") ents = list(doc.ents) assert ents[0].label_ == "PERSON" assert ents[0].text == "Mr. Best"
Name | Description |
---|---|
RETURNS | Entities in the document, one Span per entity. |
Doc.spans
A dictionary of named span groups, to store and access additional span
annotations. You can write to it by assigning a list of Span
objects or a SpanGroup
to a given key.
Example
doc = nlp("Their goi ng home") doc.spans["errors"] = [doc[0:1], doc[2:4]]
Name | Description |
---|---|
RETURNS | The span groups assigned to the document. |
Doc.cats
Maps a label to a score for categories applied to the document. Typically set by
the TextCategorizer
.
Example
doc = nlp("This is a text about football.") print(doc.cats)
Name | Description |
---|---|
RETURNS | The text categories mapped to scores. |
Doc.noun_chunks
Iterate over the base noun phrases in the document. Yields base noun-phrase
Span
objects, if the document has been syntactically parsed. A base noun
phrase, or "NP chunk", is a noun phrase that does not permit other NPs to be
nested within it – so no NP-level coordination, no prepositional phrases, and no
relative clauses.
To customize the noun chunk iterator in a loaded pipeline, modify
nlp.vocab.get_noun_chunks
. If the noun_chunk
syntax iterator has not been
implemented for the given language, a NotImplementedError
is raised.
Example
doc = nlp("A phrase with another phrase occurs.") chunks = list(doc.noun_chunks) assert len(chunks) == 2 assert chunks[0].text == "A phrase" assert chunks[1].text == "another phrase"
Name | Description |
---|---|
YIELDS | Noun chunks in the document. |
Doc.sents
Iterate over the sentences in the document. Sentence spans have no label.
This property is only available when
sentence boundaries have been set on the
document by the parser
, senter
, sentencizer
or some custom function. It
will raise an error otherwise.
Example
doc = nlp("This is a sentence. Here's another...") sents = list(doc.sents) assert len(sents) == 2 assert [s.root.text for s in sents] == ["is", "'s"]
Name | Description |
---|---|
YIELDS | Sentences in the document. |
Doc.has_vector
A boolean value indicating whether a word vector is associated with the object.
Example
doc = nlp("I like apples") assert doc.has_vector
Name | Description |
---|---|
RETURNS | Whether the document has a vector data attached. |
Doc.vector
A real-valued meaning representation. Defaults to an average of the token vectors.
Example
doc = nlp("I like apples") assert doc.vector.dtype == "float32" assert doc.vector.shape == (300,)
Name | Description |
---|---|
RETURNS | A 1-dimensional array representing the document's vector. |
Doc.vector_norm
The L2 norm of the document's vector representation.
Example
doc1 = nlp("I like apples") doc2 = nlp("I like oranges") doc1.vector_norm # 4.54232424414368 doc2.vector_norm # 3.304373298575751 assert doc1.vector_norm != doc2.vector_norm
Name | Description |
---|---|
RETURNS | The L2 norm of the vector representation. |
Attributes
Name | Description |
---|---|
text |
A string representation of the document text. |
text_with_ws |
An alias of Doc.text , provided for duck-type compatibility with Span and Token . |
mem |
The document's local memory heap, for all C data it owns. |
vocab |
The store of lexical types. |
tensor 2 |
Container for dense vector representations. |
user_data |
A generic storage area, for user custom data. |
lang 2.1 |
Language of the document's vocabulary. |
lang_ 2.1 |
Language of the document's vocabulary. |
sentiment |
The document's positivity/negativity score, if available. |
user_hooks |
A dictionary that allows customization of the Doc 's properties. |
user_token_hooks |
A dictionary that allows customization of properties of Token children. |
user_span_hooks |
A dictionary that allows customization of properties of Span children. |
has_unknown_spaces |
Whether the document was constructed without known spacing between tokens (typically when created from gold tokenization). |
_ |
User space for adding custom attribute extensions. |
Serialization fields
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the exclude
argument.
Example
data = doc.to_bytes(exclude=["text", "tensor"]) doc.from_disk("./doc.bin", exclude=["user_data"])
Name | Description |
---|---|
text |
The value of the Doc.text attribute. |
sentiment |
The value of the Doc.sentiment attribute. |
tensor |
The value of the Doc.tensor attribute. |
user_data |
The value of the Doc.user_data dictionary. |
user_data_keys |
The keys of the Doc.user_data dictionary. |
user_data_values |
The values of the Doc.user_data dictionary. |