mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			131 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			131 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
<a href="https://explosion.ai"><img src="https://explosion.ai/assets/img/logo.svg" width="125" height="125" align="right" /></a>
 | 
						||
 | 
						||
# spaCy examples
 | 
						||
 | 
						||
For spaCy v3 we've converted many of the [v2 example
 | 
						||
scripts](https://github.com/explosion/spaCy/tree/v2.3.x/examples/) into
 | 
						||
end-to-end [spacy projects](https://spacy.io/usage/projects) workflows. The
 | 
						||
workflows include all the steps to go from data to packaged spaCy models.
 | 
						||
 | 
						||
## 🪐 Pipeline component demos
 | 
						||
 | 
						||
The simplest demos for training a single pipeline component are in the
 | 
						||
[`pipelines`](https://github.com/explosion/projects/blob/v3/pipelines) category
 | 
						||
including:
 | 
						||
 | 
						||
- [`pipelines/ner_demo`](https://github.com/explosion/projects/blob/v3/pipelines/ner_demo):
 | 
						||
  Train a named entity recognizer
 | 
						||
- [`pipelines/textcat_demo`](https://github.com/explosion/projects/blob/v3/pipelines/textcat_demo):
 | 
						||
  Train a text classifier
 | 
						||
- [`pipelines/parser_intent_demo`](https://github.com/explosion/projects/blob/v3/pipelines/parser_intent_demo):
 | 
						||
  Train a dependency parser for custom semantics
 | 
						||
 | 
						||
## 🪐 Tutorials
 | 
						||
 | 
						||
The [`tutorials`](https://github.com/explosion/projects/blob/v3/tutorials)
 | 
						||
category includes examples that work through specific NLP use cases end-to-end:
 | 
						||
 | 
						||
- [`tutorials/textcat_goemotions`](https://github.com/explosion/projects/blob/v3/tutorials/textcat_goemotions):
 | 
						||
  Train a text classifier to categorize emotions in Reddit posts
 | 
						||
- [`tutorials/nel_emerson`](https://github.com/explosion/projects/blob/v3/tutorials/nel_emerson):
 | 
						||
  Use an entity linker to disambiguate mentions of the same name
 | 
						||
 | 
						||
Check out the [projects documentation](https://spacy.io/usage/projects) and
 | 
						||
browse through the [available
 | 
						||
projects](https://github.com/explosion/projects/)!
 | 
						||
 | 
						||
## 🚀 Get started with a demo project
 | 
						||
 | 
						||
The
 | 
						||
[`pipelines/ner_demo`](https://github.com/explosion/projects/blob/v3/pipelines/ner_demo)
 | 
						||
project converts the spaCy v2
 | 
						||
[`train_ner.py`](https://github.com/explosion/spaCy/blob/v2.3.x/examples/training/train_ner.py)
 | 
						||
demo script into a spaCy v3 project.
 | 
						||
 | 
						||
1. Clone the project:
 | 
						||
 | 
						||
   ```bash
 | 
						||
   python -m spacy project clone pipelines/ner_demo
 | 
						||
   ```
 | 
						||
 | 
						||
2. Install requirements and download any data assets:
 | 
						||
 | 
						||
   ```bash
 | 
						||
   cd ner_demo
 | 
						||
   python -m pip install -r requirements.txt
 | 
						||
   python -m spacy project assets
 | 
						||
   ```
 | 
						||
 | 
						||
3. Run the default workflow to convert, train and evaluate:
 | 
						||
 | 
						||
   ```bash
 | 
						||
   python -m spacy project run all
 | 
						||
   ```
 | 
						||
 | 
						||
   Sample output:
 | 
						||
 | 
						||
   ```none
 | 
						||
   ℹ Running workflow 'all'
 | 
						||
   
 | 
						||
   ================================== convert ==================================
 | 
						||
   Running command: /home/user/venv/bin/python scripts/convert.py en assets/train.json corpus/train.spacy
 | 
						||
   Running command: /home/user/venv/bin/python scripts/convert.py en assets/dev.json corpus/dev.spacy
 | 
						||
   
 | 
						||
   =============================== create-config ===============================
 | 
						||
   Running command: /home/user/venv/bin/python -m spacy init config --lang en --pipeline ner configs/config.cfg --force
 | 
						||
   ℹ Generated config template specific for your use case
 | 
						||
   - Language: en
 | 
						||
   - Pipeline: ner
 | 
						||
   - Optimize for: efficiency
 | 
						||
   - Hardware: CPU
 | 
						||
   - Transformer: None
 | 
						||
   ✔ Auto-filled config with all values
 | 
						||
   ✔ Saved config
 | 
						||
   configs/config.cfg
 | 
						||
   You can now add your data and train your pipeline:
 | 
						||
   python -m spacy train config.cfg --paths.train ./train.spacy --paths.dev ./dev.spacy
 | 
						||
   
 | 
						||
   =================================== train ===================================
 | 
						||
   Running command: /home/user/venv/bin/python -m spacy train configs/config.cfg --output training/ --paths.train corpus/train.spacy --paths.dev corpus/dev.spacy --training.eval_frequency 10 --training.max_steps 100 --gpu-id -1
 | 
						||
   ℹ Using CPU
 | 
						||
   
 | 
						||
   =========================== Initializing pipeline ===========================
 | 
						||
   [2021-03-11 19:34:59,101] [INFO] Set up nlp object from config
 | 
						||
   [2021-03-11 19:34:59,109] [INFO] Pipeline: ['tok2vec', 'ner']
 | 
						||
   [2021-03-11 19:34:59,113] [INFO] Created vocabulary
 | 
						||
   [2021-03-11 19:34:59,113] [INFO] Finished initializing nlp object
 | 
						||
   [2021-03-11 19:34:59,265] [INFO] Initialized pipeline components: ['tok2vec', 'ner']
 | 
						||
   ✔ Initialized pipeline
 | 
						||
   
 | 
						||
   ============================= Training pipeline =============================
 | 
						||
   ℹ Pipeline: ['tok2vec', 'ner']
 | 
						||
   ℹ Initial learn rate: 0.001
 | 
						||
   E    #       LOSS TOK2VEC  LOSS NER  ENTS_F  ENTS_P  ENTS_R  SCORE 
 | 
						||
   ---  ------  ------------  --------  ------  ------  ------  ------
 | 
						||
     0       0          0.00      7.90    0.00    0.00    0.00    0.00
 | 
						||
    10      10          0.11     71.07    0.00    0.00    0.00    0.00
 | 
						||
    20      20          0.65     22.44   50.00   50.00   50.00    0.50
 | 
						||
    30      30          0.22      6.38   80.00   66.67  100.00    0.80
 | 
						||
    40      40          0.00      0.00   80.00   66.67  100.00    0.80
 | 
						||
    50      50          0.00      0.00   80.00   66.67  100.00    0.80
 | 
						||
    60      60          0.00      0.00  100.00  100.00  100.00    1.00
 | 
						||
    70      70          0.00      0.00  100.00  100.00  100.00    1.00
 | 
						||
    80      80          0.00      0.00  100.00  100.00  100.00    1.00
 | 
						||
    90      90          0.00      0.00  100.00  100.00  100.00    1.00
 | 
						||
   100     100          0.00      0.00  100.00  100.00  100.00    1.00
 | 
						||
   ✔ Saved pipeline to output directory
 | 
						||
   training/model-last
 | 
						||
   ```
 | 
						||
 | 
						||
4. Package the model:
 | 
						||
 | 
						||
   ```bash
 | 
						||
   python -m spacy project run package
 | 
						||
   ```
 | 
						||
 | 
						||
5. Visualize the model's output with [Streamlit](https://streamlit.io):
 | 
						||
 | 
						||
   ```bash
 | 
						||
   python -m spacy project run visualize-model
 | 
						||
   ```
 |