mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	Added functionality for spans and docs to get lowest common ancestor matrix by simply calling: doc.get_lca_matrix() or doc[:3].get_lca_matrix(). Corresponding unit tests were also added under spacy/tests/doc and spacy/tests/spans. Designed to address: https://github.com/explosion/spaCy/issues/969.
		
			
				
	
	
		
			472 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			472 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
# coding: utf8
 | 
						||
from __future__ import unicode_literals
 | 
						||
from collections import defaultdict
 | 
						||
 | 
						||
cimport numpy as np
 | 
						||
import numpy
 | 
						||
import numpy.linalg
 | 
						||
from libc.math cimport sqrt
 | 
						||
 | 
						||
from .doc cimport token_by_start, token_by_end
 | 
						||
from ..structs cimport TokenC, LexemeC
 | 
						||
from ..typedefs cimport flags_t, attr_t, hash_t
 | 
						||
from ..attrs cimport attr_id_t
 | 
						||
from ..parts_of_speech cimport univ_pos_t
 | 
						||
from ..util import normalize_slice
 | 
						||
from ..attrs cimport IS_PUNCT, IS_SPACE
 | 
						||
from ..lexeme cimport Lexeme
 | 
						||
from ..compat import is_config
 | 
						||
from .. import about
 | 
						||
 | 
						||
 | 
						||
cdef class Span:
 | 
						||
    """
 | 
						||
    A slice from a Doc object.
 | 
						||
    """
 | 
						||
    def __cinit__(self, Doc doc, int start, int end, int label=0, vector=None,
 | 
						||
                  vector_norm=None):
 | 
						||
        """
 | 
						||
        Create a Span object from the slice doc[start : end]
 | 
						||
 | 
						||
        Arguments:
 | 
						||
            doc (Doc): The parent document.
 | 
						||
            start (int): The index of the first token of the span.
 | 
						||
            end (int): The index of the first token after the span.
 | 
						||
            label (int): A label to attach to the Span, e.g. for named entities.
 | 
						||
            vector (ndarray[ndim=1, dtype='float32']): A meaning representation of the span.
 | 
						||
        Returns:
 | 
						||
            Span The newly constructed object.
 | 
						||
        """
 | 
						||
        if not (0 <= start <= end <= len(doc)):
 | 
						||
            raise IndexError
 | 
						||
 | 
						||
        self.doc = doc
 | 
						||
        self.start = start
 | 
						||
        self.start_char = self.doc[start].idx if start < self.doc.length else 0
 | 
						||
        self.end = end
 | 
						||
        if end >= 1:
 | 
						||
            self.end_char = self.doc[end - 1].idx + len(self.doc[end - 1])
 | 
						||
        else:
 | 
						||
            self.end_char = 0
 | 
						||
        self.label = label
 | 
						||
        self._vector = vector
 | 
						||
        self._vector_norm = vector_norm
 | 
						||
 | 
						||
    def __richcmp__(self, Span other, int op):
 | 
						||
        # Eq
 | 
						||
        if op == 0:
 | 
						||
            return self.start_char < other.start_char
 | 
						||
        elif op == 1:
 | 
						||
            return self.start_char <= other.start_char
 | 
						||
        elif op == 2:
 | 
						||
            return self.start_char == other.start_char and self.end_char == other.end_char
 | 
						||
        elif op == 3:
 | 
						||
            return self.start_char != other.start_char or self.end_char != other.end_char
 | 
						||
        elif op == 4:
 | 
						||
            return self.start_char > other.start_char
 | 
						||
        elif op == 5:
 | 
						||
            return self.start_char >= other.start_char
 | 
						||
 | 
						||
    def __hash__(self):
 | 
						||
        return hash((self.doc, self.label, self.start_char, self.end_char))
 | 
						||
 | 
						||
 | 
						||
    def __len__(self):
 | 
						||
        self._recalculate_indices()
 | 
						||
        if self.end < self.start:
 | 
						||
            return 0
 | 
						||
        return self.end - self.start
 | 
						||
 | 
						||
    def __repr__(self):
 | 
						||
        if is_config(python3=True):
 | 
						||
            return self.text
 | 
						||
        return self.text.encode('utf-8')
 | 
						||
 | 
						||
    def __getitem__(self, object i):
 | 
						||
        self._recalculate_indices()
 | 
						||
        if isinstance(i, slice):
 | 
						||
            start, end = normalize_slice(len(self), i.start, i.stop, i.step)
 | 
						||
            return Span(self.doc, start + self.start, end + self.start)
 | 
						||
        else:
 | 
						||
            if i < 0:
 | 
						||
                return self.doc[self.end + i]
 | 
						||
            else:
 | 
						||
                return self.doc[self.start + i]
 | 
						||
 | 
						||
    def __iter__(self):
 | 
						||
        self._recalculate_indices()
 | 
						||
        for i in range(self.start, self.end):
 | 
						||
            yield self.doc[i]
 | 
						||
 | 
						||
    def merge(self, *args, **attributes):
 | 
						||
        """
 | 
						||
        Retokenize the document, such that the span is merged into a single token.
 | 
						||
 | 
						||
        Arguments:
 | 
						||
            **attributes:
 | 
						||
                Attributes to assign to the merged token. By default, attributes
 | 
						||
                are inherited from the syntactic root token of the span.
 | 
						||
        Returns:
 | 
						||
            token (Token):
 | 
						||
                The newly merged token.
 | 
						||
        """
 | 
						||
        return self.doc.merge(self.start_char, self.end_char, *args, **attributes)
 | 
						||
 | 
						||
    def similarity(self, other):
 | 
						||
        """
 | 
						||
        Make a semantic similarity estimate. The default estimate is cosine
 | 
						||
        similarity using an average of word vectors.
 | 
						||
 | 
						||
        Arguments:
 | 
						||
            other (object): The object to compare with. By default, accepts Doc,
 | 
						||
                Span, Token and Lexeme objects.
 | 
						||
 | 
						||
        Return:
 | 
						||
            score (float): A scalar similarity score. Higher is more similar.
 | 
						||
        """
 | 
						||
        if 'similarity' in self.doc.user_span_hooks:
 | 
						||
            self.doc.user_span_hooks['similarity'](self, other)
 | 
						||
        if self.vector_norm == 0.0 or other.vector_norm == 0.0:
 | 
						||
            return 0.0
 | 
						||
        return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm)
 | 
						||
 | 
						||
    def get_lca_matrix(self):
 | 
						||
        '''
 | 
						||
        Calculates the lowest common ancestor matrix
 | 
						||
        for a given Spacy span.
 | 
						||
        Returns LCA matrix containing the integer index
 | 
						||
        of the ancestor, or -1 if no common ancestor is
 | 
						||
        found (ex if span excludes a necessary ancestor).
 | 
						||
        Apologies about the recursion, but the
 | 
						||
        impact on performance is negligible given
 | 
						||
        the natural limitations on the depth of a typical human sentence.
 | 
						||
        '''
 | 
						||
 | 
						||
        def __pairwise_lca(token_j, token_k, lca_matrix, margins):
 | 
						||
            offset = margins[0]
 | 
						||
            token_k_head = token_k.head if token_k.head.i in range(*margins) else token_k
 | 
						||
            token_j_head = token_j.head if token_j.head.i in range(*margins) else token_j
 | 
						||
            token_j_i = token_j.i - offset
 | 
						||
            token_k_i = token_k.i - offset
 | 
						||
 | 
						||
            if lca_matrix[token_j_i][token_k_i] != -2:
 | 
						||
                return lca_matrix[token_j_i][token_k_i]
 | 
						||
            elif token_j == token_k:
 | 
						||
                lca_index = token_j_i
 | 
						||
            elif token_k_head == token_j:
 | 
						||
                lca_index = token_j_i
 | 
						||
            elif token_j_head == token_k:
 | 
						||
                lca_index = token_k_i
 | 
						||
            elif (token_j_head == token_j) and (token_k_head == token_k):
 | 
						||
                lca_index = -1
 | 
						||
            else:
 | 
						||
                lca_index = __pairwise_lca(token_j_head, token_k_head, lca_matrix, margins)
 | 
						||
 | 
						||
            lca_matrix[token_j_i][token_k_i] = lca_index
 | 
						||
            lca_matrix[token_k_i][token_j_i] = lca_index
 | 
						||
 | 
						||
            return lca_index
 | 
						||
 | 
						||
        lca_matrix = numpy.empty((len(self), len(self)), dtype=numpy.int32)
 | 
						||
        lca_matrix.fill(-2)
 | 
						||
        margins = [self.start, self.end]
 | 
						||
 | 
						||
        for j in range(len(self)):
 | 
						||
            token_j = self[j]
 | 
						||
            for k in range(len(self)):
 | 
						||
                token_k = self[k]
 | 
						||
                lca_matrix[j][k] = __pairwise_lca(token_j, token_k, lca_matrix, margins)
 | 
						||
                lca_matrix[k][j] = lca_matrix[j][k]
 | 
						||
 | 
						||
        return lca_matrix
 | 
						||
 | 
						||
 | 
						||
 | 
						||
    cpdef int _recalculate_indices(self) except -1:
 | 
						||
        if self.end > self.doc.length \
 | 
						||
        or self.doc.c[self.start].idx != self.start_char \
 | 
						||
        or (self.doc.c[self.end-1].idx + self.doc.c[self.end-1].lex.length) != self.end_char:
 | 
						||
            start = token_by_start(self.doc.c, self.doc.length, self.start_char)
 | 
						||
            if self.start == -1:
 | 
						||
                raise IndexError("Error calculating span: Can't find start")
 | 
						||
            end = token_by_end(self.doc.c, self.doc.length, self.end_char)
 | 
						||
            if end == -1:
 | 
						||
                raise IndexError("Error calculating span: Can't find end")
 | 
						||
 | 
						||
            self.start = start
 | 
						||
            self.end = end + 1
 | 
						||
 | 
						||
    property sent:
 | 
						||
        """
 | 
						||
        The sentence span that this span is a part of.
 | 
						||
 | 
						||
        Returns:
 | 
						||
            Span The sentence this is part of.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            if 'sent' in self.doc.user_span_hooks:
 | 
						||
                return self.doc.user_span_hooks['sent'](self)
 | 
						||
            # This should raise if we're not parsed.
 | 
						||
            self.doc.sents
 | 
						||
            cdef int n = 0
 | 
						||
            root = &self.doc.c[self.start]
 | 
						||
            while root.head != 0:
 | 
						||
                root += root.head
 | 
						||
                n += 1
 | 
						||
                if n >= self.doc.length:
 | 
						||
                    raise RuntimeError
 | 
						||
            return self.doc[root.l_edge : root.r_edge + 1]
 | 
						||
 | 
						||
    property has_vector:
 | 
						||
        def __get__(self):
 | 
						||
            if 'has_vector' in self.doc.user_span_hooks:
 | 
						||
                return self.doc.user_span_hooks['has_vector'](self)
 | 
						||
            return any(token.has_vector for token in self)
 | 
						||
 | 
						||
    property vector:
 | 
						||
        def __get__(self):
 | 
						||
            if 'vector' in self.doc.user_span_hooks:
 | 
						||
                return self.doc.user_span_hooks['vector'](self)
 | 
						||
            if self._vector is None:
 | 
						||
                self._vector = sum(t.vector for t in self) / len(self)
 | 
						||
            return self._vector
 | 
						||
 | 
						||
    property vector_norm:
 | 
						||
        def __get__(self):
 | 
						||
            if 'vector_norm' in self.doc.user_span_hooks:
 | 
						||
                return self.doc.user_span_hooks['vector'](self)
 | 
						||
            cdef float value
 | 
						||
            cdef double norm = 0
 | 
						||
            if self._vector_norm is None:
 | 
						||
                norm = 0
 | 
						||
                for value in self.vector:
 | 
						||
                    norm += value * value
 | 
						||
                self._vector_norm = sqrt(norm) if norm != 0 else 0
 | 
						||
            return self._vector_norm
 | 
						||
 | 
						||
    property sentiment:
 | 
						||
        def __get__(self):
 | 
						||
            if 'sentiment' in self.doc.user_span_hooks:
 | 
						||
                return self.doc.user_span_hooks['sentiment'](self)
 | 
						||
            else:
 | 
						||
                return sum([token.sentiment for token in self]) / len(self)
 | 
						||
 | 
						||
    property text:
 | 
						||
        def __get__(self):
 | 
						||
            text = self.text_with_ws
 | 
						||
            if self[-1].whitespace_:
 | 
						||
                text = text[:-1]
 | 
						||
            return text
 | 
						||
 | 
						||
    property text_with_ws:
 | 
						||
        def __get__(self):
 | 
						||
            return u''.join([t.text_with_ws for t in self])
 | 
						||
 | 
						||
    property noun_chunks:
 | 
						||
        """
 | 
						||
        Yields base noun-phrase #[code Span] objects, if the document
 | 
						||
        has been syntactically parsed. A base noun phrase, or
 | 
						||
        'NP chunk', is a noun phrase that does not permit other NPs to
 | 
						||
        be nested within it – so no NP-level coordination, no prepositional
 | 
						||
        phrases, and no relative clauses. For example:
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            if not self.doc.is_parsed:
 | 
						||
                raise ValueError(
 | 
						||
                    "noun_chunks requires the dependency parse, which "
 | 
						||
                    "requires data to be installed. For more info, see the "
 | 
						||
                    "documentation: \n%s\n" % about.__docs_models__)
 | 
						||
            # Accumulate the result before beginning to iterate over it. This prevents
 | 
						||
            # the tokenisation from being changed out from under us during the iteration.
 | 
						||
            # The tricky thing here is that Span accepts its tokenisation changing,
 | 
						||
            # so it's okay once we have the Span objects. See Issue #375
 | 
						||
            spans = []
 | 
						||
            for start, end, label in self.doc.noun_chunks_iterator(self):
 | 
						||
                spans.append(Span(self.doc, start, end, label=label))
 | 
						||
            for span in spans:
 | 
						||
                yield span
 | 
						||
 | 
						||
    property root:
 | 
						||
        """
 | 
						||
        The token within the span that's highest in the parse tree. If there's a
 | 
						||
        tie, the earlist is prefered.
 | 
						||
 | 
						||
        Returns:
 | 
						||
            Token: The root token.
 | 
						||
 | 
						||
        i.e. has the shortest path to the root of the sentence (or is the root
 | 
						||
        itself). If multiple words are equally high in the tree, the first word
 | 
						||
        is taken. For example:
 | 
						||
 | 
						||
        >>> toks = nlp(u'I like New York in Autumn.')
 | 
						||
 | 
						||
        Let's name the indices --- easier than writing "toks[4]" etc.
 | 
						||
 | 
						||
        >>> i, like, new, york, in_, autumn, dot = range(len(toks))
 | 
						||
 | 
						||
        The head of 'new' is 'York', and the head of 'York' is 'like'
 | 
						||
 | 
						||
        >>> toks[new].head.orth_
 | 
						||
        'York'
 | 
						||
        >>> toks[york].head.orth_
 | 
						||
        'like'
 | 
						||
 | 
						||
        Create a span for "New York". Its root is "York".
 | 
						||
 | 
						||
        >>> new_york = toks[new:york+1]
 | 
						||
        >>> new_york.root.orth_
 | 
						||
        'York'
 | 
						||
 | 
						||
        Here's a more complicated case, raise by Issue #214
 | 
						||
 | 
						||
        >>> toks = nlp(u'to, north and south carolina')
 | 
						||
        >>> to, north, and_, south, carolina = toks
 | 
						||
        >>> south.head.text, carolina.head.text
 | 
						||
        ('north', 'to')
 | 
						||
 | 
						||
        Here 'south' is a child of 'north', which is a child of 'carolina'.
 | 
						||
        Carolina is the root of the span:
 | 
						||
 | 
						||
        >>> south_carolina = toks[-2:]
 | 
						||
        >>> south_carolina.root.text
 | 
						||
        'carolina'
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            self._recalculate_indices()
 | 
						||
            if 'root' in self.doc.user_span_hooks:
 | 
						||
                return self.doc.user_span_hooks['root'](self)
 | 
						||
            # This should probably be called 'head', and the other one called
 | 
						||
            # 'gov'. But we went with 'head' elsehwhere, and now we're stuck =/
 | 
						||
            cdef int i
 | 
						||
            # First, we scan through the Span, and check whether there's a word
 | 
						||
            # with head==0, i.e. a sentence root. If so, we can return it. The
 | 
						||
            # longer the span, the more likely it contains a sentence root, and
 | 
						||
            # in this case we return in linear time.
 | 
						||
            for i in range(self.start, self.end):
 | 
						||
                if self.doc.c[i].head == 0:
 | 
						||
                    return self.doc[i]
 | 
						||
            # If we don't have a sentence root, we do something that's not so
 | 
						||
            # algorithmically clever, but I think should be quite fast, especially
 | 
						||
            # for short spans.
 | 
						||
            # For each word, we count the path length, and arg min this measure.
 | 
						||
            # We could use better tree logic to save steps here...But I think this
 | 
						||
            # should be okay.
 | 
						||
            cdef int current_best = self.doc.length
 | 
						||
            cdef int root = -1
 | 
						||
            for i in range(self.start, self.end):
 | 
						||
                if self.start <= (i+self.doc.c[i].head) < self.end:
 | 
						||
                    continue
 | 
						||
                words_to_root = _count_words_to_root(&self.doc.c[i], self.doc.length)
 | 
						||
                if words_to_root < current_best:
 | 
						||
                    current_best = words_to_root
 | 
						||
                    root = i
 | 
						||
            if root == -1:
 | 
						||
                return self.doc[self.start]
 | 
						||
            else:
 | 
						||
                return self.doc[root]
 | 
						||
 | 
						||
    property lefts:
 | 
						||
        """
 | 
						||
        Tokens that are to the left of the span, whose head is within the Span.
 | 
						||
 | 
						||
        Yields: Token A left-child of a token of the span.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            for token in reversed(self): # Reverse, so we get the tokens in order
 | 
						||
                for left in token.lefts:
 | 
						||
                    if left.i < self.start:
 | 
						||
                        yield left
 | 
						||
 | 
						||
    property rights:
 | 
						||
        """
 | 
						||
        Tokens that are to the right of the Span, whose head is within the Span.
 | 
						||
 | 
						||
        Yields: Token A right-child of a token of the span.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            for token in self:
 | 
						||
                for right in token.rights:
 | 
						||
                    if right.i >= self.end:
 | 
						||
                        yield right
 | 
						||
 | 
						||
    property subtree:
 | 
						||
        """
 | 
						||
        Tokens that descend from tokens in the span, but fall outside it.
 | 
						||
 | 
						||
        Yields: Token A descendant of a token within the span.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            for word in self.lefts:
 | 
						||
                yield from word.subtree
 | 
						||
            yield from self
 | 
						||
            for word in self.rights:
 | 
						||
                yield from word.subtree
 | 
						||
 | 
						||
    property ent_id:
 | 
						||
        """
 | 
						||
        An (integer) entity ID. Usually assigned by patterns in the Matcher.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            return self.root.ent_id
 | 
						||
 | 
						||
        def __set__(self, hash_t key):
 | 
						||
            # TODO
 | 
						||
            raise NotImplementedError(
 | 
						||
                "Can't yet set ent_id from Span. Vote for this feature on the issue "
 | 
						||
                "tracker: http://github.com/explosion/spaCy/issues")
 | 
						||
    property ent_id_:
 | 
						||
        """
 | 
						||
        A (string) entity ID. Usually assigned by patterns in the Matcher.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            return self.root.ent_id_
 | 
						||
 | 
						||
        def __set__(self, hash_t key):
 | 
						||
            # TODO
 | 
						||
            raise NotImplementedError(
 | 
						||
                "Can't yet set ent_id_ from Span. Vote for this feature on the issue "
 | 
						||
                "tracker: http://github.com/explosion/spaCy/issues")
 | 
						||
 | 
						||
    property orth_:
 | 
						||
        def __get__(self):
 | 
						||
            return ''.join([t.string for t in self]).strip()
 | 
						||
 | 
						||
    property lemma_:
 | 
						||
        def __get__(self):
 | 
						||
            return ' '.join([t.lemma_ for t in self]).strip()
 | 
						||
 | 
						||
    property upper_:
 | 
						||
        def __get__(self):
 | 
						||
            return ''.join([t.string.upper() for t in self]).strip()
 | 
						||
 | 
						||
    property lower_:
 | 
						||
        def __get__(self):
 | 
						||
            return ''.join([t.string.lower() for t in self]).strip()
 | 
						||
 | 
						||
    property string:
 | 
						||
        def __get__(self):
 | 
						||
            return ''.join([t.string for t in self])
 | 
						||
 | 
						||
    property label_:
 | 
						||
        def __get__(self):
 | 
						||
            return self.doc.vocab.strings[self.label]
 | 
						||
 | 
						||
 | 
						||
cdef int _count_words_to_root(const TokenC* token, int sent_length) except -1:
 | 
						||
    # Don't allow spaces to be the root, if there are
 | 
						||
    # better candidates
 | 
						||
    if Lexeme.c_check_flag(token.lex, IS_SPACE) and token.l_kids == 0 and token.r_kids == 0:
 | 
						||
        return sent_length-1
 | 
						||
    if Lexeme.c_check_flag(token.lex, IS_PUNCT) and token.l_kids == 0 and token.r_kids == 0:
 | 
						||
        return sent_length-1
 | 
						||
    cdef int n = 0
 | 
						||
    while token.head != 0:
 | 
						||
        token += token.head
 | 
						||
        n += 1
 | 
						||
        if n >= sent_length:
 | 
						||
            raise RuntimeError(
 | 
						||
                "Array bounds exceeded while searching for root word. This likely "
 | 
						||
                "means the parse tree is in an invalid state. Please report this "
 | 
						||
                "issue here: http://github.com/explosion/spaCy/issues")
 | 
						||
    return n
 |