spaCy/spacy/cli/train.py
Matthew Honnibal 8cf097ca88 Redesign training to integrate NN components
* Obsolete .parser, .entity etc names in favour of .pipeline
* Components no longer create models on initialization
* Models created by loading method (from_disk(), from_bytes() etc), or
    .begin_training()
* Add .predict(), .set_annotations() methods in components
* Pass state through pipeline, to allow components to share information
    more flexibly.
2017-05-16 16:17:30 +02:00

122 lines
4.2 KiB
Python

# coding: utf8
from __future__ import unicode_literals, division, print_function
import json
from collections import defaultdict
import cytoolz
from ..scorer import Scorer
from ..gold import GoldParse, merge_sents
from ..gold import read_json_file as read_gold_json
from ..util import prints
from .. import util
def train(language, output_dir, train_data, dev_data, n_iter, tagger, parser, ner,
parser_L1):
output_path = util.ensure_path(output_dir)
train_path = util.ensure_path(train_data)
dev_path = util.ensure_path(dev_data)
if not output_path.exists():
prints(output_path, title="Output directory not found", exits=True)
if not train_path.exists():
prints(train_path, title="Training data not found", exits=True)
if dev_path and not dev_path.exists():
prints(dev_path, title="Development data not found", exits=True)
lang = util.get_lang_class(language)
parser_cfg = {
'pseudoprojective': True,
'L1': parser_L1,
'n_iter': n_iter,
'lang': language,
'features': lang.Defaults.parser_features}
entity_cfg = {
'n_iter': n_iter,
'lang': language,
'features': lang.Defaults.entity_features}
tagger_cfg = {
'n_iter': n_iter,
'lang': language,
'features': lang.Defaults.tagger_features}
gold_train = list(read_gold_json(train_path))[:100]
gold_dev = list(read_gold_json(dev_path)) if dev_path else None
gold_dev = gold_dev[:100]
train_model(lang, gold_train, gold_dev, output_path, n_iter)
if gold_dev:
scorer = evaluate(lang, gold_dev, output_path)
print_results(scorer)
def train_config(config):
config_path = util.ensure_path(config)
if not config_path.is_file():
prints(config_path, title="Config file not found", exits=True)
config = json.load(config_path)
for setting in []:
if setting not in config.keys():
prints("%s not found in config file." % setting, title="Missing setting")
def train_model(Language, train_data, dev_data, output_path, n_iter, **cfg):
print("Itn.\tDep. Loss\tUAS\tNER F.\tTag %\tToken %")
nlp = Language(pipeline=['token_vectors', 'tags', 'dependencies', 'entities'])
# TODO: Get spaCy using Thinc's trainer and optimizer
with nlp.begin_training(train_data, **cfg) as (trainer, optimizer):
for itn, epoch in enumerate(trainer.epochs(n_iter)):
losses = defaultdict(float)
for docs, golds in epoch:
state = nlp.update(docs, golds, drop=0., sgd=optimizer)
losses['dep_loss'] += state.get('parser_loss', 0.0)
if dev_data:
dev_scores = trainer.evaluate(dev_data).scores
else:
dev_scores = defaultdict(float)
print_progress(itn, losses, dev_scores)
def evaluate(Language, gold_tuples, output_path):
print("Load parser", output_path)
nlp = Language(path=output_path)
scorer = Scorer()
for raw_text, sents in gold_tuples:
sents = merge_sents(sents)
for annot_tuples, brackets in sents:
if raw_text is None:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
nlp.tagger(tokens)
nlp.parser(tokens)
nlp.entity(tokens)
else:
tokens = nlp(raw_text)
gold = GoldParse.from_annot_tuples(tokens, annot_tuples)
scorer.score(tokens, gold)
return scorer
def print_progress(itn, losses, dev_scores):
# TODO: Fix!
scores = {}
for col in ['dep_loss', 'uas', 'tags_acc', 'token_acc', 'ents_f']:
scores[col] = 0.0
scores.update(losses)
scores.update(dev_scores)
tpl = '{:d}\t{dep_loss:.3f}\t{uas:.3f}\t{ents_f:.3f}\t{tags_acc:.3f}\t{token_acc:.3f}'
print(tpl.format(itn, **scores))
def print_results(scorer):
results = {
'TOK': '%.2f' % scorer.token_acc,
'POS': '%.2f' % scorer.tags_acc,
'UAS': '%.2f' % scorer.uas,
'LAS': '%.2f' % scorer.las,
'NER P': '%.2f' % scorer.ents_p,
'NER R': '%.2f' % scorer.ents_r,
'NER F': '%.2f' % scorer.ents_f}
util.print_table(results, title="Results")