mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-15 03:56:23 +03:00
324 lines
15 KiB
Markdown
324 lines
15 KiB
Markdown
---
|
||
title: Vocab
|
||
teaser: A storage class for vocabulary and other data shared across a language
|
||
tag: class
|
||
source: spacy/vocab.pyx
|
||
---
|
||
|
||
The `Vocab` object provides a lookup table that allows you to access
|
||
[`Lexeme`](/api/lexeme) objects, as well as the
|
||
[`StringStore`](/api/stringstore). It also owns underlying C-data that is shared
|
||
between `Doc` objects.
|
||
|
||
## Vocab.\_\_init\_\_ {#init tag="method"}
|
||
|
||
Create the vocabulary.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.vocab import Vocab
|
||
> vocab = Vocab(strings=["hello", "world"])
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ------------------------------------------- | -------------------- | ------------------------------------------------------------------------------------------------------------------ |
|
||
| `lex_attr_getters` | dict | A dictionary mapping attribute IDs to functions to compute them. Defaults to `None`. |
|
||
| `tag_map` | dict | A dictionary mapping fine-grained tags to coarse-grained parts-of-speech, and optionally morphological attributes. |
|
||
| `lemmatizer` | object | A lemmatizer. Defaults to `None`. |
|
||
| `strings` | `StringStore` / list | A [`StringStore`](/api/stringstore) that maps strings to hash values, and vice versa, or a list of strings. |
|
||
| `vectors_name` <Tag variant="new">2.2</Tag> | unicode | A name to identify the vectors table. |
|
||
| **RETURNS** | `Vocab` | The newly constructed object. |
|
||
|
||
## Vocab.\_\_len\_\_ {#len tag="method"}
|
||
|
||
Get the current number of lexemes in the vocabulary.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("This is a sentence.")
|
||
> assert len(nlp.vocab) > 0
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---- | ---------------------------------------- |
|
||
| **RETURNS** | int | The number of lexemes in the vocabulary. |
|
||
|
||
## Vocab.\_\_getitem\_\_ {#getitem tag="method"}
|
||
|
||
Retrieve a lexeme, given an int ID or a unicode string. If a previously unseen
|
||
unicode string is given, a new lexeme is created and stored.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> apple = nlp.vocab.strings["apple"]
|
||
> assert nlp.vocab[apple] == nlp.vocab["apple"]
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | ------------- | ------------------------------------------------ |
|
||
| `id_or_string` | int / unicode | The hash value of a word, or its unicode string. |
|
||
| **RETURNS** | `Lexeme` | The lexeme indicated by the given ID. |
|
||
|
||
## Vocab.\_\_iter\_\_ {#iter tag="method"}
|
||
|
||
Iterate over the lexemes in the vocabulary.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> stop_words = (lex for lex in nlp.vocab if lex.is_stop)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ---------- | -------- | --------------------------- |
|
||
| **YIELDS** | `Lexeme` | An entry in the vocabulary. |
|
||
|
||
## Vocab.\_\_contains\_\_ {#contains tag="method"}
|
||
|
||
Check whether the string has an entry in the vocabulary. To get the ID for a
|
||
given string, you need to look it up in
|
||
[`vocab.strings`](/api/vocab#attributes).
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> apple = nlp.vocab.strings["apple"]
|
||
> oov = nlp.vocab.strings["dskfodkfos"]
|
||
> assert apple in nlp.vocab
|
||
> assert oov not in nlp.vocab
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ------- | -------------------------------------------------- |
|
||
| `string` | unicode | The ID string. |
|
||
| **RETURNS** | bool | Whether the string has an entry in the vocabulary. |
|
||
|
||
## Vocab.add_flag {#add_flag tag="method"}
|
||
|
||
Set a new boolean flag to words in the vocabulary. The `flag_getter` function
|
||
will be called over the words currently in the vocab, and then applied to new
|
||
words as they occur. You'll then be able to access the flag value on each token,
|
||
using `token.check_flag(flag_id)`.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> def is_my_product(text):
|
||
> products = ["spaCy", "Thinc", "displaCy"]
|
||
> return text in products
|
||
>
|
||
> MY_PRODUCT = nlp.vocab.add_flag(is_my_product)
|
||
> doc = nlp("I like spaCy")
|
||
> assert doc[2].check_flag(MY_PRODUCT) == True
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ------------- | ---- | ----------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `flag_getter` | dict | A function `f(unicode) -> bool`, to get the flag value. |
|
||
| `flag_id` | int | An integer between 1 and 63 (inclusive), specifying the bit at which the flag will be stored. If `-1`, the lowest available bit will be chosen. |
|
||
| **RETURNS** | int | The integer ID by which the flag value can be checked. |
|
||
|
||
## Vocab.reset_vectors {#reset_vectors tag="method" new="2"}
|
||
|
||
Drop the current vector table. Because all vectors must be the same width, you
|
||
have to call this to change the size of the vectors. Only one of the `width` and
|
||
`shape` keyword arguments can be specified.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> nlp.vocab.reset_vectors(width=300)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ------- | ---- | -------------------------------------- |
|
||
| `width` | int | The new width (keyword argument only). |
|
||
| `shape` | int | The new shape (keyword argument only). |
|
||
|
||
## Vocab.prune_vectors {#prune_vectors tag="method" new="2"}
|
||
|
||
Reduce the current vector table to `nr_row` unique entries. Words mapped to the
|
||
discarded vectors will be remapped to the closest vector among those remaining.
|
||
For example, suppose the original table had vectors for the words:
|
||
`['sat', 'cat', 'feline', 'reclined']`. If we prune the vector table to, two
|
||
rows, we would discard the vectors for "feline" and "reclined". These words
|
||
would then be remapped to the closest remaining vector – so "feline" would have
|
||
the same vector as "cat", and "reclined" would have the same vector as "sat".
|
||
The similarities are judged by cosine. The original vectors may be large, so the
|
||
cosines are calculated in minibatches, to reduce memory usage.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> nlp.vocab.prune_vectors(10000)
|
||
> assert len(nlp.vocab.vectors) <= 1000
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ------------ | ---- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `nr_row` | int | The number of rows to keep in the vector table. |
|
||
| `batch_size` | int | Batch of vectors for calculating the similarities. Larger batch sizes might be faster, while temporarily requiring more memory. |
|
||
| **RETURNS** | dict | A dictionary keyed by removed words mapped to `(string, score)` tuples, where `string` is the entry the removed word was mapped to, and `score` the similarity score between the two words. |
|
||
|
||
## Vocab.get_vector {#get_vector tag="method" new="2"}
|
||
|
||
Retrieve a vector for a word in the vocabulary. Words can be looked up by string
|
||
or hash value. If no vectors data is loaded, a `ValueError` is raised. If `minn`
|
||
is defined, then the resulting vector uses [FastText](https://fasttext.cc/)'s
|
||
subword features by average over ngrams of `orth` (introduced in spaCy `v2.1`).
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> nlp.vocab.get_vector("apple")
|
||
> nlp.vocab.get_vector("apple", minn=1, maxn=5)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------------------------------- | ---------------------------------------- | ---------------------------------------------------------------------------------------------- |
|
||
| `orth` | int / unicode | The hash value of a word, or its unicode string. |
|
||
| `minn` <Tag variant="new">2.1</Tag> | int | Minimum n-gram length used for FastText's ngram computation. Defaults to the length of `orth`. |
|
||
| `maxn` <Tag variant="new">2.1</Tag> | int | Maximum n-gram length used for FastText's ngram computation. Defaults to the length of `orth`. |
|
||
| **RETURNS** | `numpy.ndarray[ndim=1, dtype='float32']` | A word vector. Size and shape are determined by the `Vocab.vectors` instance. |
|
||
|
||
## Vocab.set_vector {#set_vector tag="method" new="2"}
|
||
|
||
Set a vector for a word in the vocabulary. Words can be referenced by by string
|
||
or hash value.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> nlp.vocab.set_vector("apple", array([...]))
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------- | ---------------------------------------- | ------------------------------------------------ |
|
||
| `orth` | int / unicode | The hash value of a word, or its unicode string. |
|
||
| `vector` | `numpy.ndarray[ndim=1, dtype='float32']` | The vector to set. |
|
||
|
||
## Vocab.has_vector {#has_vector tag="method" new="2"}
|
||
|
||
Check whether a word has a vector. Returns `False` if no vectors are loaded.
|
||
Words can be looked up by string or hash value.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> if nlp.vocab.has_vector("apple"):
|
||
> vector = nlp.vocab.get_vector("apple")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ------------- | ------------------------------------------------ |
|
||
| `orth` | int / unicode | The hash value of a word, or its unicode string. |
|
||
| **RETURNS** | bool | Whether the word has a vector. |
|
||
|
||
## Vocab.to_disk {#to_disk tag="method" new="2"}
|
||
|
||
Save the current state to a directory.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> nlp.vocab.to_disk("/path/to/vocab")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| --------- | ---------------- | --------------------------------------------------------------------------------------------------------------------- |
|
||
| `path` | unicode / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
||
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
||
|
||
## Vocab.from_disk {#from_disk tag="method" new="2"}
|
||
|
||
Loads state from a directory. Modifies the object in place and returns it.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.vocab import Vocab
|
||
> vocab = Vocab().from_disk("/path/to/vocab")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---------------- | -------------------------------------------------------------------------- |
|
||
| `path` | unicode / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
|
||
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
||
| **RETURNS** | `Vocab` | The modified `Vocab` object. |
|
||
|
||
## Vocab.to_bytes {#to_bytes tag="method"}
|
||
|
||
Serialize the current state to a binary string.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> vocab_bytes = nlp.vocab.to_bytes()
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ----- | ------------------------------------------------------------------------- |
|
||
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
||
| **RETURNS** | bytes | The serialized form of the `Vocab` object. |
|
||
|
||
## Vocab.from_bytes {#from_bytes tag="method"}
|
||
|
||
Load state from a binary string.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.vocab import Vocab
|
||
> vocab_bytes = nlp.vocab.to_bytes()
|
||
> vocab = Vocab()
|
||
> vocab.from_bytes(vocab_bytes)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ------------ | ------- | ------------------------------------------------------------------------- |
|
||
| `bytes_data` | bytes | The data to load from. |
|
||
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
||
| **RETURNS** | `Vocab` | The `Vocab` object. |
|
||
|
||
## Attributes {#attributes}
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> apple_id = nlp.vocab.strings["apple"]
|
||
> assert type(apple_id) == int
|
||
> PERSON = nlp.vocab.strings["PERSON"]
|
||
> assert type(PERSON) == int
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| --------------------------------------------- | ------------- | ------------------------------------------------------------ |
|
||
| `strings` | `StringStore` | A table managing the string-to-int mapping. |
|
||
| `vectors` <Tag variant="new">2</Tag> | `Vectors` | A table associating word IDs to word vectors. |
|
||
| `vectors_length` | int | Number of dimensions for each word vector. |
|
||
| `lookups` | `Lookups` | The available lookup tables in this vocab. |
|
||
| `writing_system` <Tag variant="new">2.1</Tag> | dict | A dict with information about the language's writing system. |
|
||
|
||
## Serialization fields {#serialization-fields}
|
||
|
||
During serialization, spaCy will export several data fields used to restore
|
||
different aspects of the object. If needed, you can exclude them from
|
||
serialization by passing in the string names via the `exclude` argument.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> data = vocab.to_bytes(exclude=["strings", "vectors"])
|
||
> vocab.from_disk("./vocab", exclude=["strings"])
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| --------- | ----------------------------------------------------- |
|
||
| `strings` | The strings in the [`StringStore`](/api/stringstore). |
|
||
| `lexemes` | The lexeme data. |
|
||
| `vectors` | The word vectors, if available. |
|
||
| `lookups` | The lookup tables, if available. |
|