mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
		
			
				
	
	
		
			205 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			205 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy
 | 
						|
import zlib
 | 
						|
import srsly
 | 
						|
from thinc.backends import NumpyOps
 | 
						|
 | 
						|
from ..compat import copy_reg
 | 
						|
from ..tokens import Doc
 | 
						|
from ..attrs import SPACY, ORTH, intify_attr
 | 
						|
from ..errors import Errors
 | 
						|
 | 
						|
 | 
						|
class DocBin(object):
 | 
						|
    """Pack Doc objects for binary serialization.
 | 
						|
 | 
						|
    The DocBin class lets you efficiently serialize the information from a
 | 
						|
    collection of Doc objects. You can control which information is serialized
 | 
						|
    by passing a list of attribute IDs, and optionally also specify whether the
 | 
						|
    user data is serialized. The DocBin is faster and produces smaller data
 | 
						|
    sizes than pickle, and allows you to deserialize without executing arbitrary
 | 
						|
    Python code.
 | 
						|
 | 
						|
    The serialization format is gzipped msgpack, where the msgpack object has
 | 
						|
    the following structure:
 | 
						|
 | 
						|
    {
 | 
						|
        "attrs": List[uint64], # e.g. [TAG, HEAD, ENT_IOB, ENT_TYPE]
 | 
						|
        "tokens": bytes, # Serialized numpy uint64 array with the token data
 | 
						|
        "spaces": bytes, # Serialized numpy boolean array with spaces data
 | 
						|
        "lengths": bytes, # Serialized numpy int32 array with the doc lengths
 | 
						|
        "strings": List[unicode] # List of unique strings in the token data
 | 
						|
    }
 | 
						|
 | 
						|
    Strings for the words, tags, labels etc are represented by 64-bit hashes in
 | 
						|
    the token data, and every string that occurs at least once is passed via the
 | 
						|
    strings object. This means the storage is more efficient if you pack more
 | 
						|
    documents together, because you have less duplication in the strings.
 | 
						|
 | 
						|
    A notable downside to this format is that you can't easily extract just one
 | 
						|
    document from the DocBin.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, attrs=None, store_user_data=False):
 | 
						|
        """Create a DocBin object to hold serialized annotations.
 | 
						|
 | 
						|
        attrs (list): List of attributes to serialize. 'orth' and 'spacy' are
 | 
						|
            always serialized, so they're not required. Defaults to None.
 | 
						|
        store_user_data (bool): Whether to include the `Doc.user_data`.
 | 
						|
        RETURNS (DocBin): The newly constructed object.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#init
 | 
						|
        """
 | 
						|
        attrs = attrs or []
 | 
						|
        attrs = sorted([intify_attr(attr) for attr in attrs])
 | 
						|
        self.attrs = [attr for attr in attrs if attr != ORTH and attr != SPACY]
 | 
						|
        self.attrs.insert(0, ORTH)  # Ensure ORTH is always attrs[0]
 | 
						|
        self.tokens = []
 | 
						|
        self.spaces = []
 | 
						|
        self.cats = []
 | 
						|
        self.user_data = []
 | 
						|
        self.strings = set()
 | 
						|
        self.store_user_data = store_user_data
 | 
						|
 | 
						|
    def __len__(self):
 | 
						|
        """RETURNS: The number of Doc objects added to the DocBin."""
 | 
						|
        return len(self.tokens)
 | 
						|
 | 
						|
    def add(self, doc):
 | 
						|
        """Add a Doc's annotations to the DocBin for serialization.
 | 
						|
 | 
						|
        doc (Doc): The Doc object to add.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#add
 | 
						|
        """
 | 
						|
        array = doc.to_array(self.attrs)
 | 
						|
        if len(array.shape) == 1:
 | 
						|
            array = array.reshape((array.shape[0], 1))
 | 
						|
        self.tokens.append(array)
 | 
						|
        spaces = doc.to_array(SPACY)
 | 
						|
        assert array.shape[0] == spaces.shape[0]  # this should never happen
 | 
						|
        spaces = spaces.reshape((spaces.shape[0], 1))
 | 
						|
        self.spaces.append(numpy.asarray(spaces, dtype=bool))
 | 
						|
        self.strings.update(w.text for w in doc)
 | 
						|
        self.cats.append(doc.cats)
 | 
						|
        if self.store_user_data:
 | 
						|
            self.user_data.append(srsly.msgpack_dumps(doc.user_data))
 | 
						|
 | 
						|
    def get_docs(self, vocab):
 | 
						|
        """Recover Doc objects from the annotations, using the given vocab.
 | 
						|
 | 
						|
        vocab (Vocab): The shared vocab.
 | 
						|
        YIELDS (Doc): The Doc objects.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#get_docs
 | 
						|
        """
 | 
						|
        for string in self.strings:
 | 
						|
            vocab[string]
 | 
						|
        orth_col = self.attrs.index(ORTH)
 | 
						|
        for i in range(len(self.tokens)):
 | 
						|
            tokens = self.tokens[i]
 | 
						|
            spaces = self.spaces[i]
 | 
						|
            words = [vocab.strings[orth] for orth in tokens[:, orth_col]]
 | 
						|
            doc = Doc(vocab, words=words, spaces=spaces)
 | 
						|
            doc = doc.from_array(self.attrs, tokens)
 | 
						|
            doc.cats = self.cats[i]
 | 
						|
            if self.store_user_data:
 | 
						|
                user_data = srsly.msgpack_loads(self.user_data[i], use_list=False)
 | 
						|
                doc.user_data.update(user_data)
 | 
						|
            yield doc
 | 
						|
 | 
						|
    def merge(self, other):
 | 
						|
        """Extend the annotations of this DocBin with the annotations from
 | 
						|
        another. Will raise an error if the pre-defined attrs of the two
 | 
						|
        DocBins don't match.
 | 
						|
 | 
						|
        other (DocBin): The DocBin to merge into the current bin.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#merge
 | 
						|
        """
 | 
						|
        if self.attrs != other.attrs:
 | 
						|
            raise ValueError(Errors.E166.format(current=self.attrs, other=other.attrs))
 | 
						|
        self.tokens.extend(other.tokens)
 | 
						|
        self.spaces.extend(other.spaces)
 | 
						|
        self.strings.update(other.strings)
 | 
						|
        self.cats.extend(other.cats)
 | 
						|
        if self.store_user_data:
 | 
						|
            self.user_data.extend(other.user_data)
 | 
						|
 | 
						|
    def to_bytes(self):
 | 
						|
        """Serialize the DocBin's annotations to a bytestring.
 | 
						|
 | 
						|
        RETURNS (bytes): The serialized DocBin.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#to_bytes
 | 
						|
        """
 | 
						|
        for tokens in self.tokens:
 | 
						|
            assert len(tokens.shape) == 2, tokens.shape  # this should never happen
 | 
						|
        lengths = [len(tokens) for tokens in self.tokens]
 | 
						|
        msg = {
 | 
						|
            "attrs": self.attrs,
 | 
						|
            "tokens": numpy.vstack(self.tokens).tobytes("C"),
 | 
						|
            "spaces": numpy.vstack(self.spaces).tobytes("C"),
 | 
						|
            "lengths": numpy.asarray(lengths, dtype="int32").tobytes("C"),
 | 
						|
            "strings": list(self.strings),
 | 
						|
            "cats": self.cats,
 | 
						|
        }
 | 
						|
        if self.store_user_data:
 | 
						|
            msg["user_data"] = self.user_data
 | 
						|
        return zlib.compress(srsly.msgpack_dumps(msg))
 | 
						|
 | 
						|
    def from_bytes(self, bytes_data):
 | 
						|
        """Deserialize the DocBin's annotations from a bytestring.
 | 
						|
 | 
						|
        bytes_data (bytes): The data to load from.
 | 
						|
        RETURNS (DocBin): The loaded DocBin.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/docbin#from_bytes
 | 
						|
        """
 | 
						|
        msg = srsly.msgpack_loads(zlib.decompress(bytes_data))
 | 
						|
        self.attrs = msg["attrs"]
 | 
						|
        self.strings = set(msg["strings"])
 | 
						|
        lengths = numpy.frombuffer(msg["lengths"], dtype="int32")
 | 
						|
        flat_spaces = numpy.frombuffer(msg["spaces"], dtype=bool)
 | 
						|
        flat_tokens = numpy.frombuffer(msg["tokens"], dtype="uint64")
 | 
						|
        shape = (flat_tokens.size // len(self.attrs), len(self.attrs))
 | 
						|
        flat_tokens = flat_tokens.reshape(shape)
 | 
						|
        flat_spaces = flat_spaces.reshape((flat_spaces.size, 1))
 | 
						|
        self.tokens = NumpyOps().unflatten(flat_tokens, lengths)
 | 
						|
        self.spaces = NumpyOps().unflatten(flat_spaces, lengths)
 | 
						|
        self.cats = msg["cats"]
 | 
						|
        if self.store_user_data and "user_data" in msg:
 | 
						|
            self.user_data = list(msg["user_data"])
 | 
						|
        for tokens in self.tokens:
 | 
						|
            assert len(tokens.shape) == 2, tokens.shape  # this should never happen
 | 
						|
        return self
 | 
						|
 | 
						|
 | 
						|
def merge_bins(bins):
 | 
						|
    merged = None
 | 
						|
    for byte_string in bins:
 | 
						|
        if byte_string is not None:
 | 
						|
            doc_bin = DocBin(store_user_data=True).from_bytes(byte_string)
 | 
						|
            if merged is None:
 | 
						|
                merged = doc_bin
 | 
						|
            else:
 | 
						|
                merged.merge(doc_bin)
 | 
						|
    if merged is not None:
 | 
						|
        return merged.to_bytes()
 | 
						|
    else:
 | 
						|
        return b""
 | 
						|
 | 
						|
 | 
						|
def pickle_bin(doc_bin):
 | 
						|
    return (unpickle_bin, (doc_bin.to_bytes(),))
 | 
						|
 | 
						|
 | 
						|
def unpickle_bin(byte_string):
 | 
						|
    return DocBin().from_bytes(byte_string)
 | 
						|
 | 
						|
 | 
						|
copy_reg.pickle(DocBin, pickle_bin, unpickle_bin)
 | 
						|
# Compatibility, as we had named it this previously.
 | 
						|
Binder = DocBin
 | 
						|
 | 
						|
__all__ = ["DocBin"]
 |