mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
		
			
				
	
	
		
			1006 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			1006 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
# cython: infer_types=True
 | 
						||
from libc.string cimport memcpy
 | 
						||
from cpython.mem cimport PyMem_Malloc, PyMem_Free
 | 
						||
# Compiler crashes on memory view coercion without this. Should report bug.
 | 
						||
from cython.view cimport array as cvarray
 | 
						||
cimport numpy as np
 | 
						||
np.import_array()
 | 
						||
 | 
						||
import numpy
 | 
						||
from thinc.util import get_array_module
 | 
						||
 | 
						||
from ..typedefs cimport hash_t
 | 
						||
from ..lexeme cimport Lexeme
 | 
						||
from ..attrs cimport IS_ALPHA, IS_ASCII, IS_DIGIT, IS_LOWER, IS_PUNCT, IS_SPACE
 | 
						||
from ..attrs cimport IS_BRACKET, IS_QUOTE, IS_LEFT_PUNCT, IS_RIGHT_PUNCT
 | 
						||
from ..attrs cimport IS_OOV, IS_TITLE, IS_UPPER, IS_CURRENCY, LIKE_URL, LIKE_NUM, LIKE_EMAIL
 | 
						||
from ..attrs cimport IS_STOP, ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX
 | 
						||
from ..attrs cimport LENGTH, CLUSTER, LEMMA, POS, TAG, DEP
 | 
						||
from ..symbols cimport conj
 | 
						||
 | 
						||
from .. import parts_of_speech
 | 
						||
from .. import util
 | 
						||
from ..errors import Errors, Warnings, user_warning, models_warning
 | 
						||
from .underscore import Underscore, get_ext_args
 | 
						||
from .morphanalysis cimport MorphAnalysis
 | 
						||
 | 
						||
 | 
						||
cdef class Token:
 | 
						||
    """An individual token – i.e. a word, punctuation symbol, whitespace,
 | 
						||
    etc.
 | 
						||
 | 
						||
    DOCS: https://spacy.io/api/token
 | 
						||
    """
 | 
						||
    @classmethod
 | 
						||
    def set_extension(cls, name, **kwargs):
 | 
						||
        """Define a custom attribute which becomes available as `Token._`.
 | 
						||
 | 
						||
        name (unicode): Name of the attribute to set.
 | 
						||
        default: Optional default value of the attribute.
 | 
						||
        getter (callable): Optional getter function.
 | 
						||
        setter (callable): Optional setter function.
 | 
						||
        method (callable): Optional method for method extension.
 | 
						||
        force (bool): Force overwriting existing attribute.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#set_extension
 | 
						||
        USAGE: https://spacy.io/usage/processing-pipelines#custom-components-attributes
 | 
						||
        """
 | 
						||
        if cls.has_extension(name) and not kwargs.get("force", False):
 | 
						||
            raise ValueError(Errors.E090.format(name=name, obj="Token"))
 | 
						||
        Underscore.token_extensions[name] = get_ext_args(**kwargs)
 | 
						||
 | 
						||
    @classmethod
 | 
						||
    def get_extension(cls, name):
 | 
						||
        """Look up a previously registered extension by name.
 | 
						||
 | 
						||
        name (unicode): Name of the extension.
 | 
						||
        RETURNS (tuple): A `(default, method, getter, setter)` tuple.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#get_extension
 | 
						||
        """
 | 
						||
        return Underscore.token_extensions.get(name)
 | 
						||
 | 
						||
    @classmethod
 | 
						||
    def has_extension(cls, name):
 | 
						||
        """Check whether an extension has been registered.
 | 
						||
 | 
						||
        name (unicode): Name of the extension.
 | 
						||
        RETURNS (bool): Whether the extension has been registered.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#has_extension
 | 
						||
        """
 | 
						||
        return name in Underscore.token_extensions
 | 
						||
 | 
						||
    @classmethod
 | 
						||
    def remove_extension(cls, name):
 | 
						||
        """Remove a previously registered extension.
 | 
						||
 | 
						||
        name (unicode): Name of the extension.
 | 
						||
        RETURNS (tuple): A `(default, method, getter, setter)` tuple of the
 | 
						||
            removed extension.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#remove_extension
 | 
						||
        """
 | 
						||
        if not cls.has_extension(name):
 | 
						||
            raise ValueError(Errors.E046.format(name=name))
 | 
						||
        return Underscore.token_extensions.pop(name)
 | 
						||
 | 
						||
    def __cinit__(self, Vocab vocab, Doc doc, int offset):
 | 
						||
        """Construct a `Token` object.
 | 
						||
 | 
						||
        vocab (Vocab): A storage container for lexical types.
 | 
						||
        doc (Doc): The parent document.
 | 
						||
        offset (int): The index of the token within the document.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#init
 | 
						||
        """
 | 
						||
        self.vocab = vocab
 | 
						||
        self.doc = doc
 | 
						||
        self.c = &self.doc.c[offset]
 | 
						||
        self.i = offset
 | 
						||
 | 
						||
    def __hash__(self):
 | 
						||
        return hash((self.doc, self.i))
 | 
						||
 | 
						||
    def __len__(self):
 | 
						||
        """The number of unicode characters in the token, i.e. `token.text`.
 | 
						||
 | 
						||
        RETURNS (int): The number of unicode characters in the token.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#len
 | 
						||
        """
 | 
						||
        return self.c.lex.length
 | 
						||
 | 
						||
    def __unicode__(self):
 | 
						||
        return self.text
 | 
						||
 | 
						||
    def __bytes__(self):
 | 
						||
        return self.text.encode('utf8')
 | 
						||
 | 
						||
    def __str__(self):
 | 
						||
        return self.__unicode__()
 | 
						||
 | 
						||
    def __repr__(self):
 | 
						||
        return self.__str__()
 | 
						||
 | 
						||
    def __richcmp__(self, Token other, int op):
 | 
						||
        # http://cython.readthedocs.io/en/latest/src/userguide/special_methods.html
 | 
						||
        if other is None:
 | 
						||
            if op in (0, 1, 2):
 | 
						||
                return False
 | 
						||
            else:
 | 
						||
                return True
 | 
						||
        cdef Doc my_doc = self.doc
 | 
						||
        cdef Doc other_doc = other.doc
 | 
						||
        my = self.idx
 | 
						||
        their = other.idx
 | 
						||
        if op == 0:
 | 
						||
            return my < their
 | 
						||
        elif op == 2:
 | 
						||
            if my_doc is other_doc:
 | 
						||
                return my == their
 | 
						||
            else:
 | 
						||
                return False
 | 
						||
        elif op == 4:
 | 
						||
            return my > their
 | 
						||
        elif op == 1:
 | 
						||
            return my <= their
 | 
						||
        elif op == 3:
 | 
						||
            if my_doc is other_doc:
 | 
						||
                return my != their
 | 
						||
            else:
 | 
						||
                return True
 | 
						||
        elif op == 5:
 | 
						||
            return my >= their
 | 
						||
        else:
 | 
						||
            raise ValueError(Errors.E041.format(op=op))
 | 
						||
 | 
						||
    def __reduce__(self):
 | 
						||
        raise NotImplementedError(Errors.E111)
 | 
						||
 | 
						||
    @property
 | 
						||
    def _(self):
 | 
						||
        """Custom extension attributes registered via `set_extension`."""
 | 
						||
        return Underscore(Underscore.token_extensions, self,
 | 
						||
                          start=self.idx, end=None)
 | 
						||
 | 
						||
    cpdef bint check_flag(self, attr_id_t flag_id) except -1:
 | 
						||
        """Check the value of a boolean flag.
 | 
						||
 | 
						||
        flag_id (int): The ID of the flag attribute.
 | 
						||
        RETURNS (bool): Whether the flag is set.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#check_flag
 | 
						||
        """
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, flag_id)
 | 
						||
 | 
						||
    def nbor(self, int i=1):
 | 
						||
        """Get a neighboring token.
 | 
						||
 | 
						||
        i (int): The relative position of the token to get. Defaults to 1.
 | 
						||
        RETURNS (Token): The token at position `self.doc[self.i+i]`.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#nbor
 | 
						||
        """
 | 
						||
        if self.i+i < 0 or (self.i+i >= len(self.doc)):
 | 
						||
            raise IndexError(Errors.E042.format(i=self.i, j=i, length=len(self.doc)))
 | 
						||
        return self.doc[self.i+i]
 | 
						||
 | 
						||
    def similarity(self, other):
 | 
						||
        """Make a semantic similarity estimate. The default estimate is cosine
 | 
						||
        similarity using an average of word vectors.
 | 
						||
 | 
						||
        other (object): The object to compare with. By default, accepts `Doc`,
 | 
						||
            `Span`, `Token` and `Lexeme` objects.
 | 
						||
        RETURNS (float): A scalar similarity score. Higher is more similar.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#similarity
 | 
						||
        """
 | 
						||
        if "similarity" in self.doc.user_token_hooks:
 | 
						||
            return self.doc.user_token_hooks["similarity"](self, other)
 | 
						||
        if hasattr(other, "__len__") and len(other) == 1 and hasattr(other, "__getitem__"):
 | 
						||
            if self.c.lex.orth == getattr(other[0], "orth", None):
 | 
						||
                return 1.0
 | 
						||
        elif hasattr(other, "orth"):
 | 
						||
            if self.c.lex.orth == other.orth:
 | 
						||
                return 1.0
 | 
						||
        if self.vocab.vectors.n_keys == 0:
 | 
						||
            models_warning(Warnings.W007.format(obj="Token"))
 | 
						||
        if self.vector_norm == 0 or other.vector_norm == 0:
 | 
						||
            user_warning(Warnings.W008.format(obj="Token"))
 | 
						||
            return 0.0
 | 
						||
        vector = self.vector
 | 
						||
        xp = get_array_module(vector)
 | 
						||
        return (xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm))
 | 
						||
 | 
						||
    @property
 | 
						||
    def morph(self):
 | 
						||
        return MorphAnalysis.from_id(self.vocab, self.c.morph)
 | 
						||
 | 
						||
    property morph_:
 | 
						||
        def __get__(self):
 | 
						||
            return str(MorphAnalysis.from_id(self.vocab, self.c.morph))
 | 
						||
 | 
						||
        def __set__(self, features):
 | 
						||
            cdef hash_t key = self.vocab.morphology.add(features)
 | 
						||
            self.c.morph = key
 | 
						||
 | 
						||
    @property
 | 
						||
    def lex_id(self):
 | 
						||
        """RETURNS (int): Sequential ID of the token's lexical type."""
 | 
						||
        return self.c.lex.id
 | 
						||
 | 
						||
    @property
 | 
						||
    def rank(self):
 | 
						||
        """RETURNS (int): Sequential ID of the token's lexical type, used to
 | 
						||
        index into tables, e.g. for word vectors."""
 | 
						||
        return self.c.lex.id
 | 
						||
 | 
						||
    @property
 | 
						||
    def string(self):
 | 
						||
        """Deprecated: Use Token.text_with_ws instead."""
 | 
						||
        return self.text_with_ws
 | 
						||
 | 
						||
    @property
 | 
						||
    def text(self):
 | 
						||
        """RETURNS (unicode): The original verbatim text of the token."""
 | 
						||
        return self.orth_
 | 
						||
 | 
						||
    @property
 | 
						||
    def text_with_ws(self):
 | 
						||
        """RETURNS (unicode): The text content of the span (with trailing
 | 
						||
            whitespace).
 | 
						||
        """
 | 
						||
        cdef unicode orth = self.vocab.strings[self.c.lex.orth]
 | 
						||
        if self.c.spacy:
 | 
						||
            return orth + " "
 | 
						||
        else:
 | 
						||
            return orth
 | 
						||
 | 
						||
    @property
 | 
						||
    def prob(self):
 | 
						||
        """RETURNS (float): Smoothed log probability estimate of token type."""
 | 
						||
        return self.c.lex.prob
 | 
						||
 | 
						||
    @property
 | 
						||
    def sentiment(self):
 | 
						||
        """RETURNS (float): A scalar value indicating the positivity or
 | 
						||
            negativity of the token."""
 | 
						||
        if "sentiment" in self.doc.user_token_hooks:
 | 
						||
            return self.doc.user_token_hooks["sentiment"](self)
 | 
						||
        return self.c.lex.sentiment
 | 
						||
 | 
						||
    @property
 | 
						||
    def lang(self):
 | 
						||
        """RETURNS (uint64): ID of the language of the parent document's
 | 
						||
            vocabulary.
 | 
						||
        """
 | 
						||
        return self.c.lex.lang
 | 
						||
 | 
						||
    @property
 | 
						||
    def idx(self):
 | 
						||
        """RETURNS (int): The character offset of the token within the parent
 | 
						||
            document.
 | 
						||
        """
 | 
						||
        return self.c.idx
 | 
						||
 | 
						||
    @property
 | 
						||
    def cluster(self):
 | 
						||
        """RETURNS (int): Brown cluster ID."""
 | 
						||
        return self.c.lex.cluster
 | 
						||
 | 
						||
    @property
 | 
						||
    def orth(self):
 | 
						||
        """RETURNS (uint64): ID of the verbatim text content."""
 | 
						||
        return self.c.lex.orth
 | 
						||
 | 
						||
    @property
 | 
						||
    def lower(self):
 | 
						||
        """RETURNS (uint64): ID of the lowercase token text."""
 | 
						||
        return self.c.lex.lower
 | 
						||
 | 
						||
    @property
 | 
						||
    def norm(self):
 | 
						||
        """RETURNS (uint64): ID of the token's norm, i.e. a normalised form of
 | 
						||
            the token text. Usually set in the language's tokenizer exceptions
 | 
						||
            or norm exceptions.
 | 
						||
        """
 | 
						||
        if self.c.norm == 0:
 | 
						||
            return self.c.lex.norm
 | 
						||
        else:
 | 
						||
            return self.c.norm
 | 
						||
 | 
						||
    @property
 | 
						||
    def shape(self):
 | 
						||
        """RETURNS (uint64): ID of the token's shape, a transform of the
 | 
						||
            tokens's string, to show orthographic features (e.g. "Xxxx", "dd").
 | 
						||
        """
 | 
						||
        return self.c.lex.shape
 | 
						||
 | 
						||
    @property
 | 
						||
    def prefix(self):
 | 
						||
        """RETURNS (uint64): ID of a length-N substring from the start of the
 | 
						||
            token. Defaults to `N=1`.
 | 
						||
        """
 | 
						||
        return self.c.lex.prefix
 | 
						||
 | 
						||
    @property
 | 
						||
    def suffix(self):
 | 
						||
        """RETURNS (uint64): ID of a length-N substring from the end of the
 | 
						||
            token. Defaults to `N=3`.
 | 
						||
        """
 | 
						||
        return self.c.lex.suffix
 | 
						||
 | 
						||
    property lemma:
 | 
						||
        """RETURNS (uint64): ID of the base form of the word, with no
 | 
						||
            inflectional suffixes.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            if self.c.lemma == 0:
 | 
						||
                lemma_ = self.vocab.morphology.lemmatizer.lookup(self.orth_, orth=self.orth)
 | 
						||
                return self.vocab.strings[lemma_]
 | 
						||
            else:
 | 
						||
                return self.c.lemma
 | 
						||
 | 
						||
        def __set__(self, attr_t lemma):
 | 
						||
            self.c.lemma = lemma
 | 
						||
 | 
						||
    property pos:
 | 
						||
        """RETURNS (uint64): ID of coarse-grained part-of-speech tag."""
 | 
						||
        def __get__(self):
 | 
						||
            return self.c.pos
 | 
						||
 | 
						||
        def __set__(self, pos):
 | 
						||
            self.c.pos = pos
 | 
						||
 | 
						||
    property tag:
 | 
						||
        """RETURNS (uint64): ID of fine-grained part-of-speech tag."""
 | 
						||
        def __get__(self):
 | 
						||
            return self.c.tag
 | 
						||
 | 
						||
        def __set__(self, attr_t tag):
 | 
						||
            self.vocab.morphology.assign_tag(self.c, tag)
 | 
						||
 | 
						||
    property dep:
 | 
						||
        """RETURNS (uint64): ID of syntactic dependency label."""
 | 
						||
        def __get__(self):
 | 
						||
            return self.c.dep
 | 
						||
 | 
						||
        def __set__(self, attr_t label):
 | 
						||
            self.c.dep = label
 | 
						||
 | 
						||
    @property
 | 
						||
    def has_vector(self):
 | 
						||
        """A boolean value indicating whether a word vector is associated with
 | 
						||
        the object.
 | 
						||
 | 
						||
        RETURNS (bool): Whether a word vector is associated with the object.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#has_vector
 | 
						||
        """
 | 
						||
        if "has_vector" in self.doc.user_token_hooks:
 | 
						||
            return self.doc.user_token_hooks["has_vector"](self)
 | 
						||
        if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
 | 
						||
            return True
 | 
						||
        return self.vocab.has_vector(self.c.lex.orth)
 | 
						||
 | 
						||
    @property
 | 
						||
    def vector(self):
 | 
						||
        """A real-valued meaning representation.
 | 
						||
 | 
						||
        RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
 | 
						||
            representing the token's semantics.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#vector
 | 
						||
        """
 | 
						||
        if "vector" in self.doc.user_token_hooks:
 | 
						||
            return self.doc.user_token_hooks["vector"](self)
 | 
						||
        if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
 | 
						||
            return self.doc.tensor[self.i]
 | 
						||
        else:
 | 
						||
            return self.vocab.get_vector(self.c.lex.orth)
 | 
						||
 | 
						||
    @property
 | 
						||
    def vector_norm(self):
 | 
						||
        """The L2 norm of the token's vector representation.
 | 
						||
 | 
						||
        RETURNS (float): The L2 norm of the vector representation.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#vector_norm
 | 
						||
        """
 | 
						||
        if "vector_norm" in self.doc.user_token_hooks:
 | 
						||
            return self.doc.user_token_hooks["vector_norm"](self)
 | 
						||
        vector = self.vector
 | 
						||
        xp = get_array_module(vector)
 | 
						||
        total = (vector ** 2).sum()
 | 
						||
        return xp.sqrt(total) if total != 0. else 0.
 | 
						||
 | 
						||
    @property
 | 
						||
    def tensor(self):
 | 
						||
        if self.doc.tensor is None:
 | 
						||
            return None
 | 
						||
        return self.doc.tensor[self.i]
 | 
						||
 | 
						||
    @property
 | 
						||
    def n_lefts(self):
 | 
						||
        """The number of leftward immediate children of the word, in the
 | 
						||
        syntactic dependency parse.
 | 
						||
 | 
						||
        RETURNS (int): The number of leftward immediate children of the
 | 
						||
            word, in the syntactic dependency parse.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#n_lefts
 | 
						||
        """
 | 
						||
        return self.c.l_kids
 | 
						||
 | 
						||
    @property
 | 
						||
    def n_rights(self):
 | 
						||
        """The number of rightward immediate children of the word, in the
 | 
						||
        syntactic dependency parse.
 | 
						||
 | 
						||
        RETURNS (int): The number of rightward immediate children of the
 | 
						||
            word, in the syntactic dependency parse.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#n_rights
 | 
						||
        """
 | 
						||
        return self.c.r_kids
 | 
						||
 | 
						||
    @property
 | 
						||
    def sent(self):
 | 
						||
        """RETURNS (Span): The sentence span that the token is a part of."""
 | 
						||
        if 'sent' in self.doc.user_token_hooks:
 | 
						||
            return self.doc.user_token_hooks["sent"](self)
 | 
						||
        return self.doc[self.i : self.i+1].sent
 | 
						||
 | 
						||
    property sent_start:
 | 
						||
        def __get__(self):
 | 
						||
            """Deprecated: use Token.is_sent_start instead."""
 | 
						||
            # Raising a deprecation warning here causes errors for autocomplete
 | 
						||
            # Handle broken backwards compatibility case: doc[0].sent_start
 | 
						||
            # was False.
 | 
						||
            if self.i == 0:
 | 
						||
                return False
 | 
						||
            else:
 | 
						||
                return self.c.sent_start
 | 
						||
 | 
						||
        def __set__(self, value):
 | 
						||
            self.is_sent_start = value
 | 
						||
 | 
						||
    property is_sent_start:
 | 
						||
        """A boolean value indicating whether the token starts a sentence.
 | 
						||
        `None` if unknown. Defaults to `True` for the first token in the `Doc`.
 | 
						||
 | 
						||
        RETURNS (bool / None): Whether the token starts a sentence.
 | 
						||
            None if unknown.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#is_sent_start
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            if self.c.sent_start == 0:
 | 
						||
                return None
 | 
						||
            elif self.c.sent_start < 0:
 | 
						||
                return False
 | 
						||
            else:
 | 
						||
                return True
 | 
						||
 | 
						||
        def __set__(self, value):
 | 
						||
            if self.doc.is_parsed:
 | 
						||
                raise ValueError(Errors.E043)
 | 
						||
            if value is None:
 | 
						||
                self.c.sent_start = 0
 | 
						||
            elif value is True:
 | 
						||
                self.c.sent_start = 1
 | 
						||
            elif value is False:
 | 
						||
                self.c.sent_start = -1
 | 
						||
            else:
 | 
						||
                raise ValueError(Errors.E044.format(value=value))
 | 
						||
 | 
						||
    @property
 | 
						||
    def lefts(self):
 | 
						||
        """The leftward immediate children of the word, in the syntactic
 | 
						||
        dependency parse.
 | 
						||
 | 
						||
        YIELDS (Token): A left-child of the token.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#lefts
 | 
						||
        """
 | 
						||
        cdef int nr_iter = 0
 | 
						||
        cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge)
 | 
						||
        while ptr < self.c:
 | 
						||
            if ptr + ptr.head == self.c:
 | 
						||
                yield self.doc[ptr - (self.c - self.i)]
 | 
						||
            ptr += 1
 | 
						||
            nr_iter += 1
 | 
						||
            # This is ugly, but it's a way to guard out infinite loops
 | 
						||
            if nr_iter >= 10000000:
 | 
						||
                raise RuntimeError(Errors.E045.format(attr="token.lefts"))
 | 
						||
 | 
						||
    @property
 | 
						||
    def rights(self):
 | 
						||
        """The rightward immediate children of the word, in the syntactic
 | 
						||
        dependency parse.
 | 
						||
 | 
						||
        YIELDS (Token): A right-child of the token.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#rights
 | 
						||
        """
 | 
						||
        cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i)
 | 
						||
        tokens = []
 | 
						||
        cdef int nr_iter = 0
 | 
						||
        while ptr > self.c:
 | 
						||
            if ptr + ptr.head == self.c:
 | 
						||
                tokens.append(self.doc[ptr - (self.c - self.i)])
 | 
						||
            ptr -= 1
 | 
						||
            nr_iter += 1
 | 
						||
            if nr_iter >= 10000000:
 | 
						||
                raise RuntimeError(Errors.E045.format(attr="token.rights"))
 | 
						||
        tokens.reverse()
 | 
						||
        for t in tokens:
 | 
						||
            yield t
 | 
						||
 | 
						||
    @property
 | 
						||
    def children(self):
 | 
						||
        """A sequence of the token's immediate syntactic children.
 | 
						||
 | 
						||
        YIELDS (Token): A child token such that `child.head==self`.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#children
 | 
						||
        """
 | 
						||
        yield from self.lefts
 | 
						||
        yield from self.rights
 | 
						||
 | 
						||
    @property
 | 
						||
    def subtree(self):
 | 
						||
        """A sequence containing the token and all the token's syntactic
 | 
						||
        descendants.
 | 
						||
 | 
						||
        YIELDS (Token): A descendent token such that
 | 
						||
            `self.is_ancestor(descendent) or token == self`.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#subtree
 | 
						||
        """
 | 
						||
        for word in self.lefts:
 | 
						||
            yield from word.subtree
 | 
						||
        yield self
 | 
						||
        for word in self.rights:
 | 
						||
            yield from word.subtree
 | 
						||
 | 
						||
    @property
 | 
						||
    def left_edge(self):
 | 
						||
        """The leftmost token of this token's syntactic descendents.
 | 
						||
 | 
						||
        RETURNS (Token): The first token such that `self.is_ancestor(token)`.
 | 
						||
        """
 | 
						||
        return self.doc[self.c.l_edge]
 | 
						||
 | 
						||
    @property
 | 
						||
    def right_edge(self):
 | 
						||
        """The rightmost token of this token's syntactic descendents.
 | 
						||
 | 
						||
        RETURNS (Token): The last token such that `self.is_ancestor(token)`.
 | 
						||
        """
 | 
						||
        return self.doc[self.c.r_edge]
 | 
						||
 | 
						||
    @property
 | 
						||
    def ancestors(self):
 | 
						||
        """A sequence of this token's syntactic ancestors.
 | 
						||
 | 
						||
        YIELDS (Token): A sequence of ancestor tokens such that
 | 
						||
            `ancestor.is_ancestor(self)`.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#ancestors
 | 
						||
        """
 | 
						||
        cdef const TokenC* head_ptr = self.c
 | 
						||
        # Guard against infinite loop, no token can have
 | 
						||
        # more ancestors than tokens in the tree.
 | 
						||
        cdef int i = 0
 | 
						||
        while head_ptr.head != 0 and i < self.doc.length:
 | 
						||
            head_ptr += head_ptr.head
 | 
						||
            yield self.doc[head_ptr - (self.c - self.i)]
 | 
						||
            i += 1
 | 
						||
 | 
						||
    def is_ancestor(self, descendant):
 | 
						||
        """Check whether this token is a parent, grandparent, etc. of another
 | 
						||
        in the dependency tree.
 | 
						||
 | 
						||
        descendant (Token): Another token.
 | 
						||
        RETURNS (bool): Whether this token is the ancestor of the descendant.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#is_ancestor
 | 
						||
        """
 | 
						||
        if self.doc is not descendant.doc:
 | 
						||
            return False
 | 
						||
        return any(ancestor.i == self.i for ancestor in descendant.ancestors)
 | 
						||
 | 
						||
    property head:
 | 
						||
        """The syntactic parent, or "governor", of this token.
 | 
						||
 | 
						||
        RETURNS (Token): The token predicted by the parser to be the head of
 | 
						||
            the current token.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            return self.doc[self.i + self.c.head]
 | 
						||
 | 
						||
        def __set__(self, Token new_head):
 | 
						||
            # This function sets the head of self to new_head and updates the
 | 
						||
            # counters for left/right dependents and left/right corner for the
 | 
						||
            # new and the old head
 | 
						||
            # Do nothing if old head is new head
 | 
						||
            if self.i + self.c.head == new_head.i:
 | 
						||
                return
 | 
						||
            cdef Token old_head = self.head
 | 
						||
            cdef int rel_newhead_i = new_head.i - self.i
 | 
						||
            # Is the new head a descendant of the old head
 | 
						||
            cdef bint is_desc = old_head.is_ancestor(new_head)
 | 
						||
            cdef int new_edge
 | 
						||
            cdef Token anc, child
 | 
						||
            # Update number of deps of old head
 | 
						||
            if self.c.head > 0:  # left dependent
 | 
						||
                old_head.c.l_kids -= 1
 | 
						||
                if self.c.l_edge == old_head.c.l_edge:
 | 
						||
                    # The token dominates the left edge so the left edge of
 | 
						||
                    # the head may change when the token is reattached, it may
 | 
						||
                    # not change if the new head is a descendant of the current
 | 
						||
                    # head.
 | 
						||
                    new_edge = self.c.l_edge
 | 
						||
                    # The new l_edge is the left-most l_edge on any of the
 | 
						||
                    # other dependents where the l_edge is left of the head,
 | 
						||
                    # otherwise it is the head
 | 
						||
                    if not is_desc:
 | 
						||
                        new_edge = old_head.i
 | 
						||
                        for child in old_head.children:
 | 
						||
                            if child == self:
 | 
						||
                                continue
 | 
						||
                            if child.c.l_edge < new_edge:
 | 
						||
                                new_edge = child.c.l_edge
 | 
						||
                        old_head.c.l_edge = new_edge
 | 
						||
                    # Walk up the tree from old_head and assign new l_edge to
 | 
						||
                    # ancestors until an ancestor already has an l_edge that's
 | 
						||
                    # further left
 | 
						||
                    for anc in old_head.ancestors:
 | 
						||
                        if anc.c.l_edge <= new_edge:
 | 
						||
                            break
 | 
						||
                        anc.c.l_edge = new_edge
 | 
						||
            elif self.c.head < 0:  # right dependent
 | 
						||
                old_head.c.r_kids -= 1
 | 
						||
                # Do the same thing as for l_edge
 | 
						||
                if self.c.r_edge == old_head.c.r_edge:
 | 
						||
                    new_edge = self.c.r_edge
 | 
						||
                    if not is_desc:
 | 
						||
                        new_edge = old_head.i
 | 
						||
                        for child in old_head.children:
 | 
						||
                            if child == self:
 | 
						||
                                continue
 | 
						||
                            if child.c.r_edge > new_edge:
 | 
						||
                                new_edge = child.c.r_edge
 | 
						||
                        old_head.c.r_edge = new_edge
 | 
						||
                    for anc in old_head.ancestors:
 | 
						||
                        if anc.c.r_edge >= new_edge:
 | 
						||
                            break
 | 
						||
                        anc.c.r_edge = new_edge
 | 
						||
            # Update number of deps of new head
 | 
						||
            if rel_newhead_i > 0:  # left dependent
 | 
						||
                new_head.c.l_kids += 1
 | 
						||
                # Walk up the tree from new head and set l_edge to self.l_edge
 | 
						||
                # until you hit a token with an l_edge further to the left
 | 
						||
                if self.c.l_edge < new_head.c.l_edge:
 | 
						||
                    new_head.c.l_edge = self.c.l_edge
 | 
						||
                    for anc in new_head.ancestors:
 | 
						||
                        if anc.c.l_edge <= self.c.l_edge:
 | 
						||
                            break
 | 
						||
                        anc.c.l_edge = self.c.l_edge
 | 
						||
            elif rel_newhead_i < 0:  # right dependent
 | 
						||
                new_head.c.r_kids += 1
 | 
						||
                # Do the same as for l_edge
 | 
						||
                if self.c.r_edge > new_head.c.r_edge:
 | 
						||
                    new_head.c.r_edge = self.c.r_edge
 | 
						||
                    for anc in new_head.ancestors:
 | 
						||
                        if anc.c.r_edge >= self.c.r_edge:
 | 
						||
                            break
 | 
						||
                        anc.c.r_edge = self.c.r_edge
 | 
						||
            # Set new head
 | 
						||
            self.c.head = rel_newhead_i
 | 
						||
 | 
						||
    @property
 | 
						||
    def conjuncts(self):
 | 
						||
        """A sequence of coordinated tokens, including the token itself.
 | 
						||
 | 
						||
        RETURNS (tuple): The coordinated tokens.
 | 
						||
 | 
						||
        DOCS: https://spacy.io/api/token#conjuncts
 | 
						||
        """
 | 
						||
        cdef Token word, child
 | 
						||
        if "conjuncts" in self.doc.user_token_hooks:
 | 
						||
            return tuple(self.doc.user_token_hooks["conjuncts"](self))
 | 
						||
        start = self
 | 
						||
        while start.i != start.head.i:
 | 
						||
            if start.dep == conj:
 | 
						||
                start = start.head
 | 
						||
            else:
 | 
						||
                break
 | 
						||
        queue = [start]
 | 
						||
        output = [start]
 | 
						||
        for word in queue:
 | 
						||
            for child in word.rights:
 | 
						||
                if child.c.dep == conj:
 | 
						||
                    output.append(child)
 | 
						||
                    queue.append(child)
 | 
						||
        return tuple([w for w in output if w.i != self.i])
 | 
						||
 | 
						||
    property ent_type:
 | 
						||
        """RETURNS (uint64): Named entity type."""
 | 
						||
        def __get__(self):
 | 
						||
            return self.c.ent_type
 | 
						||
 | 
						||
        def __set__(self, ent_type):
 | 
						||
            self.c.ent_type = ent_type
 | 
						||
 | 
						||
    property ent_type_:
 | 
						||
        """RETURNS (unicode): Named entity type."""
 | 
						||
        def __get__(self):
 | 
						||
            return self.vocab.strings[self.c.ent_type]
 | 
						||
 | 
						||
        def __set__(self, ent_type):
 | 
						||
            self.c.ent_type = self.vocab.strings.add(ent_type)
 | 
						||
 | 
						||
    @property
 | 
						||
    def ent_iob(self):
 | 
						||
        """IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag
 | 
						||
        is assigned.
 | 
						||
 | 
						||
        RETURNS (uint64): IOB code of named entity tag.
 | 
						||
        """
 | 
						||
        return self.c.ent_iob
 | 
						||
 | 
						||
    @property
 | 
						||
    def ent_iob_(self):
 | 
						||
        """IOB code of named entity tag. "B" means the token begins an entity,
 | 
						||
        "I" means it is inside an entity, "O" means it is outside an entity,
 | 
						||
        and "" means no entity tag is set. "B" with an empty ent_type
 | 
						||
        means that the token is blocked from further processing by NER.
 | 
						||
 | 
						||
        RETURNS (unicode): IOB code of named entity tag.
 | 
						||
        """
 | 
						||
        iob_strings = ("", "I", "O", "B")
 | 
						||
        return iob_strings[self.c.ent_iob]
 | 
						||
 | 
						||
    property ent_id:
 | 
						||
        """RETURNS (uint64): ID of the entity the token is an instance of,
 | 
						||
            if any.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            return self.c.ent_id
 | 
						||
 | 
						||
        def __set__(self, hash_t key):
 | 
						||
            self.c.ent_id = key
 | 
						||
 | 
						||
    property ent_id_:
 | 
						||
        """RETURNS (unicode): ID of the entity the token is an instance of,
 | 
						||
            if any.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            return self.vocab.strings[self.c.ent_id]
 | 
						||
 | 
						||
        def __set__(self, name):
 | 
						||
            self.c.ent_id = self.vocab.strings.add(name)
 | 
						||
 | 
						||
    property ent_kb_id:
 | 
						||
        """RETURNS (uint64): Named entity KB ID."""
 | 
						||
        def __get__(self):
 | 
						||
            return self.c.ent_kb_id
 | 
						||
 | 
						||
        def __set__(self, attr_t ent_kb_id):
 | 
						||
            self.c.ent_kb_id = ent_kb_id
 | 
						||
 | 
						||
    property ent_kb_id_:
 | 
						||
        """RETURNS (unicode): Named entity KB ID."""
 | 
						||
        def __get__(self):
 | 
						||
            return self.vocab.strings[self.c.ent_kb_id]
 | 
						||
 | 
						||
        def __set__(self, ent_kb_id):
 | 
						||
            self.c.ent_kb_id = self.vocab.strings.add(ent_kb_id)
 | 
						||
 | 
						||
    @property
 | 
						||
    def whitespace_(self):
 | 
						||
        """RETURNS (unicode): The trailing whitespace character, if present."""
 | 
						||
        return " " if self.c.spacy else ""
 | 
						||
 | 
						||
    @property
 | 
						||
    def orth_(self):
 | 
						||
        """RETURNS (unicode): Verbatim text content (identical to
 | 
						||
            `Token.text`). Exists mostly for consistency with the other
 | 
						||
            attributes.
 | 
						||
        """
 | 
						||
        return self.vocab.strings[self.c.lex.orth]
 | 
						||
 | 
						||
    @property
 | 
						||
    def lower_(self):
 | 
						||
        """RETURNS (unicode): The lowercase token text. Equivalent to
 | 
						||
            `Token.text.lower()`.
 | 
						||
        """
 | 
						||
        return self.vocab.strings[self.c.lex.lower]
 | 
						||
 | 
						||
    property norm_:
 | 
						||
        """RETURNS (unicode): The token's norm, i.e. a normalised form of the
 | 
						||
            token text. Usually set in the language's tokenizer exceptions or
 | 
						||
            norm exceptions.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            return self.vocab.strings[self.norm]
 | 
						||
 | 
						||
        def __set__(self, unicode norm_):
 | 
						||
            self.c.norm = self.vocab.strings.add(norm_)
 | 
						||
 | 
						||
    @property
 | 
						||
    def shape_(self):
 | 
						||
        """RETURNS (unicode): Transform of the tokens's string, to show
 | 
						||
            orthographic features. For example, "Xxxx" or "dd".
 | 
						||
        """
 | 
						||
        return self.vocab.strings[self.c.lex.shape]
 | 
						||
 | 
						||
    @property
 | 
						||
    def prefix_(self):
 | 
						||
        """RETURNS (unicode): A length-N substring from the start of the token.
 | 
						||
            Defaults to `N=1`.
 | 
						||
        """
 | 
						||
        return self.vocab.strings[self.c.lex.prefix]
 | 
						||
 | 
						||
    @property
 | 
						||
    def suffix_(self):
 | 
						||
        """RETURNS (unicode): A length-N substring from the end of the token.
 | 
						||
            Defaults to `N=3`.
 | 
						||
        """
 | 
						||
        return self.vocab.strings[self.c.lex.suffix]
 | 
						||
 | 
						||
    @property
 | 
						||
    def lang_(self):
 | 
						||
        """RETURNS (unicode): Language of the parent document's vocabulary,
 | 
						||
            e.g. 'en'.
 | 
						||
        """
 | 
						||
        return self.vocab.strings[self.c.lex.lang]
 | 
						||
 | 
						||
    property lemma_:
 | 
						||
        """RETURNS (unicode): The token lemma, i.e. the base form of the word,
 | 
						||
            with no inflectional suffixes.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            if self.c.lemma == 0:
 | 
						||
                return self.vocab.morphology.lemmatizer.lookup(self.orth_, orth=self.orth)
 | 
						||
            else:
 | 
						||
                return self.vocab.strings[self.c.lemma]
 | 
						||
 | 
						||
        def __set__(self, unicode lemma_):
 | 
						||
            self.c.lemma = self.vocab.strings.add(lemma_)
 | 
						||
 | 
						||
    property pos_:
 | 
						||
        """RETURNS (unicode): Coarse-grained part-of-speech tag."""
 | 
						||
        def __get__(self):
 | 
						||
            return parts_of_speech.NAMES[self.c.pos]
 | 
						||
 | 
						||
        def __set__(self, pos_name):
 | 
						||
            self.c.pos = parts_of_speech.IDS[pos_name]
 | 
						||
 | 
						||
    property tag_:
 | 
						||
        """RETURNS (unicode): Fine-grained part-of-speech tag."""
 | 
						||
        def __get__(self):
 | 
						||
            return self.vocab.strings[self.c.tag]
 | 
						||
 | 
						||
        def __set__(self, tag):
 | 
						||
            self.tag = self.vocab.strings.add(tag)
 | 
						||
 | 
						||
    property dep_:
 | 
						||
        """RETURNS (unicode): The syntactic dependency label."""
 | 
						||
        def __get__(self):
 | 
						||
            return self.vocab.strings[self.c.dep]
 | 
						||
 | 
						||
        def __set__(self, unicode label):
 | 
						||
            self.c.dep = self.vocab.strings.add(label)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_oov(self):
 | 
						||
        """RETURNS (bool): Whether the token is out-of-vocabulary."""
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, IS_OOV)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_stop(self):
 | 
						||
        """RETURNS (bool): Whether the token is a stop word, i.e. part of a
 | 
						||
            "stop list" defined by the language data.
 | 
						||
        """
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, IS_STOP)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_alpha(self):
 | 
						||
        """RETURNS (bool): Whether the token consists of alpha characters.
 | 
						||
            Equivalent to `token.text.isalpha()`.
 | 
						||
        """
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, IS_ALPHA)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_ascii(self):
 | 
						||
        """RETURNS (bool): Whether the token consists of ASCII characters.
 | 
						||
            Equivalent to `[any(ord(c) >= 128 for c in token.text)]`.
 | 
						||
        """
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, IS_ASCII)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_digit(self):
 | 
						||
        """RETURNS (bool): Whether the token consists of digits. Equivalent to
 | 
						||
            `token.text.isdigit()`.
 | 
						||
        """
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, IS_DIGIT)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_lower(self):
 | 
						||
        """RETURNS (bool): Whether the token is in lowercase. Equivalent to
 | 
						||
            `token.text.islower()`.
 | 
						||
        """
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, IS_LOWER)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_upper(self):
 | 
						||
        """RETURNS (bool): Whether the token is in uppercase. Equivalent to
 | 
						||
            `token.text.isupper()`
 | 
						||
        """
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, IS_UPPER)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_title(self):
 | 
						||
        """RETURNS (bool): Whether the token is in titlecase. Equivalent to
 | 
						||
            `token.text.istitle()`.
 | 
						||
        """
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, IS_TITLE)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_punct(self):
 | 
						||
        """RETURNS (bool): Whether the token is punctuation."""
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, IS_PUNCT)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_space(self):
 | 
						||
        """RETURNS (bool): Whether the token consists of whitespace characters.
 | 
						||
            Equivalent to `token.text.isspace()`.
 | 
						||
        """
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, IS_SPACE)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_bracket(self):
 | 
						||
        """RETURNS (bool): Whether the token is a bracket."""
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, IS_BRACKET)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_quote(self):
 | 
						||
        """RETURNS (bool): Whether the token is a quotation mark."""
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, IS_QUOTE)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_left_punct(self):
 | 
						||
        """RETURNS (bool): Whether the token is a left punctuation mark."""
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_right_punct(self):
 | 
						||
        """RETURNS (bool): Whether the token is a right punctuation mark."""
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_currency(self):
 | 
						||
        """RETURNS (bool): Whether the token is a currency symbol."""
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, IS_CURRENCY)
 | 
						||
 | 
						||
    @property
 | 
						||
    def like_url(self):
 | 
						||
        """RETURNS (bool): Whether the token resembles a URL."""
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, LIKE_URL)
 | 
						||
 | 
						||
    @property
 | 
						||
    def like_num(self):
 | 
						||
        """RETURNS (bool): Whether the token resembles a number, e.g. "10.9",
 | 
						||
            "10", "ten", etc.
 | 
						||
        """
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, LIKE_NUM)
 | 
						||
 | 
						||
    @property
 | 
						||
    def like_email(self):
 | 
						||
        """RETURNS (bool): Whether the token resembles an email address."""
 | 
						||
        return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL)
 |