1
1
mirror of https://github.com/explosion/spaCy.git synced 2025-01-19 05:54:11 +03:00
spaCy/website/docs/api/lemmatizer.md
2020-07-29 11:36:42 +02:00

4.9 KiB

title teaser tag source
Lemmatizer Assign the base forms of words class spacy/lemmatizer.py

The Lemmatizer supports simple part-of-speech-sensitive suffix rules and lookup tables.

Lemmatizer.__init__

Initialize a Lemmatizer. Typically, this happens under the hood within spaCy when a Language subclass and its Vocab is initialized.

Example

from spacy.lemmatizer import Lemmatizer
from spacy.lookups import Lookups
lookups = Lookups()
lookups.add_table("lemma_rules", {"noun": [["s", ""]]})
lemmatizer = Lemmatizer(lookups)

For examples of the data format, see the spacy-lookups-data repo.

Name Type Description
lookups 2.2 Lookups The lookups object containing the (optional) tables "lemma_rules", "lemma_index", "lemma_exc" and "lemma_lookup".

Lemmatizer.__call__

Lemmatize a string.

Example

from spacy.lemmatizer import Lemmatizer
from spacy.lookups import Lookups
lookups = Lookups()
lookups.add_table("lemma_rules", {"noun": [["s", ""]]})
lemmatizer = Lemmatizer(lookups)
lemmas = lemmatizer("ducks", "NOUN")
assert lemmas == ["duck"]
Name Type Description
string str The string to lemmatize, e.g. the token text.
univ_pos str / int The token's universal part-of-speech tag.
morphology dict / None Morphological features following the Universal Dependencies scheme.
RETURNS list The available lemmas for the string.

Lemmatizer.lookup

Look up a lemma in the lookup table, if available. If no lemma is found, the original string is returned. Languages can provide a lookup table via the Lookups.

Example

lookups = Lookups()
lookups.add_table("lemma_lookup", {"going": "go"})
assert lemmatizer.lookup("going") == "go"
Name Type Description
string str The string to look up.
orth int Optional hash of the string to look up. If not set, the string will be used and hashed. Defaults to None.
RETURNS str The lemma if the string was found, otherwise the original string.

Lemmatizer.is_base_form

Check whether we're dealing with an uninflected paradigm, so we can avoid lemmatization entirely.

Example

pos = "verb"
morph = {"VerbForm": "inf"}
is_base_form = lemmatizer.is_base_form(pos, morph)
assert is_base_form == True
Name Type Description
univ_pos str / int The token's universal part-of-speech tag.
morphology dict The token's morphological features.
RETURNS bool Whether the token's part-of-speech tag and morphological features describe a base form.

Attributes

Name Type Description
lookups 2.2 Lookups The lookups object containing the rules and data, if available.