mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-19 22:14:12 +03:00
139 lines
5.2 KiB
Python
139 lines
5.2 KiB
Python
import numpy
|
|
from spacy.tokens import Doc, DocBin
|
|
from spacy.attrs import DEP, POS, TAG
|
|
from spacy.lang.en import English
|
|
from spacy.language import Language
|
|
from spacy.lang.en.syntax_iterators import noun_chunks
|
|
from spacy.vocab import Vocab
|
|
import spacy
|
|
import pytest
|
|
|
|
from ...util import make_tempdir
|
|
|
|
|
|
def test_issue5048(en_vocab):
|
|
words = ["This", "is", "a", "sentence"]
|
|
pos_s = ["DET", "VERB", "DET", "NOUN"]
|
|
spaces = [" ", " ", " ", ""]
|
|
deps_s = ["dep", "adj", "nn", "atm"]
|
|
tags_s = ["DT", "VBZ", "DT", "NN"]
|
|
strings = en_vocab.strings
|
|
for w in words:
|
|
strings.add(w)
|
|
deps = [strings.add(d) for d in deps_s]
|
|
pos = [strings.add(p) for p in pos_s]
|
|
tags = [strings.add(t) for t in tags_s]
|
|
attrs = [POS, DEP, TAG]
|
|
array = numpy.array(list(zip(pos, deps, tags)), dtype="uint64")
|
|
doc = Doc(en_vocab, words=words, spaces=spaces)
|
|
doc.from_array(attrs, array)
|
|
v1 = [(token.text, token.pos_, token.tag_) for token in doc]
|
|
doc2 = Doc(en_vocab, words=words, pos=pos_s, deps=deps_s, tags=tags_s)
|
|
v2 = [(token.text, token.pos_, token.tag_) for token in doc2]
|
|
assert v1 == v2
|
|
|
|
|
|
def test_issue5082():
|
|
# Ensure the 'merge_entities' pipeline does something sensible for the vectors of the merged tokens
|
|
nlp = English()
|
|
vocab = nlp.vocab
|
|
array1 = numpy.asarray([0.1, 0.5, 0.8], dtype=numpy.float32)
|
|
array2 = numpy.asarray([-0.2, -0.6, -0.9], dtype=numpy.float32)
|
|
array3 = numpy.asarray([0.3, -0.1, 0.7], dtype=numpy.float32)
|
|
array4 = numpy.asarray([0.5, 0, 0.3], dtype=numpy.float32)
|
|
array34 = numpy.asarray([0.4, -0.05, 0.5], dtype=numpy.float32)
|
|
vocab.set_vector("I", array1)
|
|
vocab.set_vector("like", array2)
|
|
vocab.set_vector("David", array3)
|
|
vocab.set_vector("Bowie", array4)
|
|
text = "I like David Bowie"
|
|
patterns = [
|
|
{"label": "PERSON", "pattern": [{"LOWER": "david"}, {"LOWER": "bowie"}]}
|
|
]
|
|
ruler = nlp.add_pipe("entity_ruler")
|
|
ruler.add_patterns(patterns)
|
|
parsed_vectors_1 = [t.vector for t in nlp(text)]
|
|
assert len(parsed_vectors_1) == 4
|
|
numpy.testing.assert_array_equal(parsed_vectors_1[0], array1)
|
|
numpy.testing.assert_array_equal(parsed_vectors_1[1], array2)
|
|
numpy.testing.assert_array_equal(parsed_vectors_1[2], array3)
|
|
numpy.testing.assert_array_equal(parsed_vectors_1[3], array4)
|
|
nlp.add_pipe("merge_entities")
|
|
parsed_vectors_2 = [t.vector for t in nlp(text)]
|
|
assert len(parsed_vectors_2) == 3
|
|
numpy.testing.assert_array_equal(parsed_vectors_2[0], array1)
|
|
numpy.testing.assert_array_equal(parsed_vectors_2[1], array2)
|
|
numpy.testing.assert_array_equal(parsed_vectors_2[2], array34)
|
|
|
|
|
|
def test_issue5137():
|
|
@Language.factory("my_component")
|
|
class MyComponent:
|
|
def __init__(self, nlp, name="my_component", categories="all_categories"):
|
|
self.nlp = nlp
|
|
self.categories = categories
|
|
self.name = name
|
|
|
|
def __call__(self, doc):
|
|
pass
|
|
|
|
def to_disk(self, path, **kwargs):
|
|
pass
|
|
|
|
def from_disk(self, path, **cfg):
|
|
pass
|
|
|
|
nlp = English()
|
|
my_component = nlp.add_pipe("my_component")
|
|
assert my_component.categories == "all_categories"
|
|
with make_tempdir() as tmpdir:
|
|
nlp.to_disk(tmpdir)
|
|
overrides = {"components": {"my_component": {"categories": "my_categories"}}}
|
|
nlp2 = spacy.load(tmpdir, config=overrides)
|
|
assert nlp2.get_pipe("my_component").categories == "my_categories"
|
|
|
|
|
|
def test_issue5141(en_vocab):
|
|
""" Ensure an empty DocBin does not crash on serialization """
|
|
doc_bin = DocBin(attrs=["DEP", "HEAD"])
|
|
assert list(doc_bin.get_docs(en_vocab)) == []
|
|
doc_bin_bytes = doc_bin.to_bytes()
|
|
doc_bin_2 = DocBin().from_bytes(doc_bin_bytes)
|
|
assert list(doc_bin_2.get_docs(en_vocab)) == []
|
|
|
|
|
|
def test_issue5152():
|
|
# Test that the comparison between a Span and a Token, goes well
|
|
# There was a bug when the number of tokens in the span equaled the number of characters in the token (!)
|
|
nlp = English()
|
|
text = nlp("Talk about being boring!")
|
|
text_var = nlp("Talk of being boring!")
|
|
y = nlp("Let")
|
|
span = text[0:3] # Talk about being
|
|
span_2 = text[0:3] # Talk about being
|
|
span_3 = text_var[0:3] # Talk of being
|
|
token = y[0] # Let
|
|
with pytest.warns(UserWarning):
|
|
assert span.similarity(token) == 0.0
|
|
assert span.similarity(span_2) == 1.0
|
|
with pytest.warns(UserWarning):
|
|
assert span_2.similarity(span_3) < 1.0
|
|
|
|
|
|
def test_issue5458():
|
|
# Test that the noun chuncker does not generate overlapping spans
|
|
# fmt: off
|
|
words = ["In", "an", "era", "where", "markets", "have", "brought", "prosperity", "and", "empowerment", "."]
|
|
vocab = Vocab(strings=words)
|
|
deps = ["ROOT", "det", "pobj", "advmod", "nsubj", "aux", "relcl", "dobj", "cc", "conj", "punct"]
|
|
pos = ["ADP", "DET", "NOUN", "ADV", "NOUN", "AUX", "VERB", "NOUN", "CCONJ", "NOUN", "PUNCT"]
|
|
heads = [0, 2, 0, 9, 6, 6, 2, 6, 7, 7, 0]
|
|
# fmt: on
|
|
en_doc = Doc(vocab, words=words, pos=pos, heads=heads, deps=deps)
|
|
en_doc.noun_chunks_iterator = noun_chunks
|
|
|
|
# if there are overlapping spans, this will fail with an E102 error "Can't merge non-disjoint spans"
|
|
nlp = English()
|
|
merge_nps = nlp.create_pipe("merge_noun_chunks")
|
|
merge_nps(en_doc)
|