mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			166 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			166 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| title: Lexeme
 | ||
| teaser: An entry in the vocabulary
 | ||
| tag: class
 | ||
| source: spacy/lexeme.pyx
 | ||
| ---
 | ||
| 
 | ||
| A `Lexeme` has no string context – it's a word type, as opposed to a word token.
 | ||
| It therefore has no part-of-speech tag, dependency parse, or lemma (if
 | ||
| lemmatization depends on the part-of-speech tag).
 | ||
| 
 | ||
| ## Lexeme.\_\_init\_\_ {#init tag="method"}
 | ||
| 
 | ||
| Create a `Lexeme` object.
 | ||
| 
 | ||
| | Name        | Type     | Description                   |
 | ||
| | ----------- | -------- | ----------------------------- |
 | ||
| | `vocab`     | `Vocab`  | The parent vocabulary.        |
 | ||
| | `orth`      | int      | The orth id of the lexeme.    |
 | ||
| | **RETURNS** | `Lexeme` | The newly constructed object. |
 | ||
| 
 | ||
| ## Lexeme.set_flag {#set_flag tag="method"}
 | ||
| 
 | ||
| Change the value of a boolean flag.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > COOL_FLAG = nlp.vocab.add_flag(lambda text: False)
 | ||
| > nlp.vocab[u'spaCy'].set_flag(COOL_FLAG, True)
 | ||
| > ```
 | ||
| 
 | ||
| | Name      | Type | Description                          |
 | ||
| | --------- | ---- | ------------------------------------ |
 | ||
| | `flag_id` | int  | The attribute ID of the flag to set. |
 | ||
| | `value`   | bool | The new value of the flag.           |
 | ||
| 
 | ||
| ## Lexeme.check_flag {#check_flag tag="method"}
 | ||
| 
 | ||
| Check the value of a boolean flag.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > is_my_library = lambda text: text in [u"spaCy", u"Thinc"]
 | ||
| > MY_LIBRARY = nlp.vocab.add_flag(is_my_library)
 | ||
| > assert nlp.vocab[u"spaCy"].check_flag(MY_LIBRARY) == True
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Type | Description                            |
 | ||
| | ----------- | ---- | -------------------------------------- |
 | ||
| | `flag_id`   | int  | The attribute ID of the flag to query. |
 | ||
| | **RETURNS** | bool | The value of the flag.                 |
 | ||
| 
 | ||
| ## Lexeme.similarity {#similarity tag="method" model="vectors"}
 | ||
| 
 | ||
| Compute a semantic similarity estimate. Defaults to cosine over vectors.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > apple = nlp.vocab[u"apple"]
 | ||
| > orange = nlp.vocab[u"orange"]
 | ||
| > apple_orange = apple.similarity(orange)
 | ||
| > orange_apple = orange.similarity(apple)
 | ||
| > assert apple_orange == orange_apple
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Type  | Description                                                                                  |
 | ||
| | ----------- | ----- | -------------------------------------------------------------------------------------------- |
 | ||
| | other       | -     | The object to compare with. By default, accepts `Doc`, `Span`, `Token` and `Lexeme` objects. |
 | ||
| | **RETURNS** | float | A scalar similarity score. Higher is more similar.                                           |
 | ||
| 
 | ||
| ## Lexeme.has_vector {#has_vector tag="property" model="vectors"}
 | ||
| 
 | ||
| A boolean value indicating whether a word vector is associated with the lexeme.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > apple = nlp.vocab[u"apple"]
 | ||
| > assert apple.has_vector
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Type | Description                                    |
 | ||
| | ----------- | ---- | ---------------------------------------------- |
 | ||
| | **RETURNS** | bool | Whether the lexeme has a vector data attached. |
 | ||
| 
 | ||
| ## Lexeme.vector {#vector tag="property" model="vectors"}
 | ||
| 
 | ||
| A real-valued meaning representation.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > apple = nlp.vocab[u"apple"]
 | ||
| > assert apple.vector.dtype == "float32"
 | ||
| > assert apple.vector.shape == (300,)
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Type                                     | Description                                           |
 | ||
| | ----------- | ---------------------------------------- | ----------------------------------------------------- |
 | ||
| | **RETURNS** | `numpy.ndarray[ndim=1, dtype='float32']` | A 1D numpy array representing the lexeme's semantics. |
 | ||
| 
 | ||
| ## Lexeme.vector_norm {#vector_norm tag="property" model="vectors"}
 | ||
| 
 | ||
| The L2 norm of the lexeme's vector representation.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > apple = nlp.vocab[u"apple"]
 | ||
| > pasta = nlp.vocab[u"pasta"]
 | ||
| > apple.vector_norm  # 7.1346845626831055
 | ||
| > pasta.vector_norm  # 7.759851932525635
 | ||
| > assert apple.vector_norm != pasta.vector_norm
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Type  | Description                               |
 | ||
| | ----------- | ----- | ----------------------------------------- |
 | ||
| | **RETURNS** | float | The L2 norm of the vector representation. |
 | ||
| 
 | ||
| ## Attributes {#attributes}
 | ||
| 
 | ||
| | Name                                         | Type    | Description                                                                                                  |
 | ||
| | -------------------------------------------- | ------- | ------------------------------------------------------------------------------------------------------------ |
 | ||
| | `vocab`                                      | `Vocab` | The lexeme's vocabulary.                                                                                     |
 | ||
| | `text`                                       | unicode | Verbatim text content.                                                                                       |
 | ||
| | `orth`                                       | int     | ID of the verbatim text content.                                                                             |
 | ||
| | `orth_`                                      | unicode | Verbatim text content (identical to `Lexeme.text`). Exists mostly for consistency with the other attributes. |
 | ||
| | `rank`                                       | int     | Sequential ID of the lexemes's lexical type, used to index into tables, e.g. for word vectors.               |
 | ||
| | `flags`                                      | int     | Container of the lexeme's binary flags.                                                                      |
 | ||
| | `norm`                                       | int     | The lexemes's norm, i.e. a normalized form of the lexeme text.                                               |
 | ||
| | `norm_`                                      | unicode | The lexemes's norm, i.e. a normalized form of the lexeme text.                                               |
 | ||
| | `lower`                                      | int     | Lowercase form of the word.                                                                                  |
 | ||
| | `lower_`                                     | unicode | Lowercase form of the word.                                                                                  |
 | ||
| | `shape`                                      | int     | Transform of the word's string, to show orthographic features.                                               |
 | ||
| | `shape_`                                     | unicode | Transform of the word's string, to show orthographic features.                                               |
 | ||
| | `prefix`                                     | int     | Length-N substring from the start of the word. Defaults to `N=1`.                                            |
 | ||
| | `prefix_`                                    | unicode | Length-N substring from the start of the word. Defaults to `N=1`.                                            |
 | ||
| | `suffix`                                     | int     | Length-N substring from the end of the word. Defaults to `N=3`.                                              |
 | ||
| | `suffix_`                                    | unicode | Length-N substring from the start of the word. Defaults to `N=3`.                                            |
 | ||
| | `is_alpha`                                   | bool    | Does the lexeme consist of alphabetic characters? Equivalent to `lexeme.text.isalpha()`.                     |
 | ||
| | `is_ascii`                                   | bool    | Does the lexeme consist of ASCII characters? Equivalent to `[any(ord(c) >= 128 for c in lexeme.text)]`.      |
 | ||
| | `is_digit`                                   | bool    | Does the lexeme consist of digits? Equivalent to `lexeme.text.isdigit()`.                                    |
 | ||
| | `is_lower`                                   | bool    | Is the lexeme in lowercase? Equivalent to `lexeme.text.islower()`.                                           |
 | ||
| | `is_upper`                                   | bool    | Is the lexeme in uppercase? Equivalent to `lexeme.text.isupper()`.                                           |
 | ||
| | `is_title`                                   | bool    | Is the lexeme in titlecase? Equivalent to `lexeme.text.istitle()`.                                           |
 | ||
| | `is_punct`                                   | bool    | Is the lexeme punctuation?                                                                                   |
 | ||
| | `is_left_punct`                              | bool    | Is the lexeme a left punctuation mark, e.g. `(`?                                                             |
 | ||
| | `is_right_punct`                             | bool    | Is the lexeme a right punctuation mark, e.g. `)`?                                                            |
 | ||
| | `is_space`                                   | bool    | Does the lexeme consist of whitespace characters? Equivalent to `lexeme.text.isspace()`.                     |
 | ||
| | `is_bracket`                                 | bool    | Is the lexeme a bracket?                                                                                     |
 | ||
| | `is_quote`                                   | bool    | Is the lexeme a quotation mark?                                                                              |
 | ||
| | `is_currency` <Tag variant="new">2.0.8</Tag> | bool    | Is the lexeme a currency symbol?                                                                             |
 | ||
| | `like_url`                                   | bool    | Does the lexeme resemble a URL?                                                                              |
 | ||
| | `like_num`                                   | bool    | Does the lexeme represent a number? e.g. "10.9", "10", "ten", etc.                                           |
 | ||
| | `like_email`                                 | bool    | Does the lexeme resemble an email address?                                                                   |
 | ||
| | `is_oov`                                     | bool    | Is the lexeme out-of-vocabulary?                                                                             |
 | ||
| | `is_stop`                                    | bool    | Is the lexeme part of a "stop list"?                                                                         |
 | ||
| | `lang`                                       | int     | Language of the parent vocabulary.                                                                           |
 | ||
| | `lang_`                                      | unicode | Language of the parent vocabulary.                                                                           |
 | ||
| | `prob`                                       | float   | Smoothed log probability estimate of the lexeme's word type (context-independent entry in the vocabulary).   |
 | ||
| | `cluster`                                    | int     | Brown cluster ID.                                                                                            |
 | ||
| | `sentiment`                                  | float   | A scalar value indicating the positivity or negativity of the lexeme.                                        |
 |