mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
c1ea55307b
* Add initial reproducibility tests * failing test for default_text_classifier (WIP) * track trouble to underlying tok2vec layer * add regression test for Issue 5551 * tests go green with https://github.com/explosion/thinc/pull/359 * update test * adding fixed seeds to HashEmbed layers, seems to fix the reproducility issue Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
372 lines
11 KiB
Python
372 lines
11 KiB
Python
from thinc.api import chain, clone, concatenate, with_array, uniqued
|
|
from thinc.api import Model, noop, with_padded, Maxout, expand_window
|
|
from thinc.api import HashEmbed, StaticVectors, PyTorchLSTM
|
|
from thinc.api import residual, LayerNorm, FeatureExtractor, Mish
|
|
|
|
from ... import util
|
|
from ...util import registry
|
|
from ...ml import _character_embed
|
|
from ...pipeline.tok2vec import Tok2VecListener
|
|
from ...attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
|
|
|
|
|
|
@registry.architectures.register("spacy.Tok2VecTensors.v1")
|
|
def tok2vec_tensors_v1(width):
|
|
tok2vec = Tok2VecListener("tok2vec", width=width)
|
|
return tok2vec
|
|
|
|
|
|
@registry.architectures.register("spacy.VocabVectors.v1")
|
|
def get_vocab_vectors(name):
|
|
nlp = util.load_model(name)
|
|
return nlp.vocab.vectors
|
|
|
|
|
|
@registry.architectures.register("spacy.Tok2Vec.v1")
|
|
def Tok2Vec(extract, embed, encode):
|
|
field_size = 0
|
|
if encode.attrs.get("receptive_field", None):
|
|
field_size = encode.attrs["receptive_field"]
|
|
with Model.define_operators({">>": chain, "|": concatenate}):
|
|
tok2vec = extract >> with_array(embed >> encode, pad=field_size)
|
|
tok2vec.set_dim("nO", encode.get_dim("nO"))
|
|
tok2vec.set_ref("embed", embed)
|
|
tok2vec.set_ref("encode", encode)
|
|
return tok2vec
|
|
|
|
|
|
@registry.architectures.register("spacy.Doc2Feats.v1")
|
|
def Doc2Feats(columns):
|
|
return FeatureExtractor(columns)
|
|
|
|
|
|
@registry.architectures.register("spacy.HashEmbedCNN.v1")
|
|
def hash_embed_cnn(
|
|
pretrained_vectors,
|
|
width,
|
|
depth,
|
|
embed_size,
|
|
maxout_pieces,
|
|
window_size,
|
|
subword_features,
|
|
dropout,
|
|
):
|
|
# Does not use character embeddings: set to False by default
|
|
return build_Tok2Vec_model(
|
|
width=width,
|
|
embed_size=embed_size,
|
|
pretrained_vectors=pretrained_vectors,
|
|
conv_depth=depth,
|
|
bilstm_depth=0,
|
|
maxout_pieces=maxout_pieces,
|
|
window_size=window_size,
|
|
subword_features=subword_features,
|
|
char_embed=False,
|
|
nM=0,
|
|
nC=0,
|
|
dropout=dropout,
|
|
)
|
|
|
|
|
|
@registry.architectures.register("spacy.HashCharEmbedCNN.v1")
|
|
def hash_charembed_cnn(
|
|
pretrained_vectors,
|
|
width,
|
|
depth,
|
|
embed_size,
|
|
maxout_pieces,
|
|
window_size,
|
|
nM,
|
|
nC,
|
|
dropout,
|
|
):
|
|
# Allows using character embeddings by setting nC, nM and char_embed=True
|
|
return build_Tok2Vec_model(
|
|
width=width,
|
|
embed_size=embed_size,
|
|
pretrained_vectors=pretrained_vectors,
|
|
conv_depth=depth,
|
|
bilstm_depth=0,
|
|
maxout_pieces=maxout_pieces,
|
|
window_size=window_size,
|
|
subword_features=False,
|
|
char_embed=True,
|
|
nM=nM,
|
|
nC=nC,
|
|
dropout=dropout,
|
|
)
|
|
|
|
|
|
@registry.architectures.register("spacy.HashEmbedBiLSTM.v1")
|
|
def hash_embed_bilstm_v1(
|
|
pretrained_vectors,
|
|
width,
|
|
depth,
|
|
embed_size,
|
|
subword_features,
|
|
maxout_pieces,
|
|
dropout,
|
|
):
|
|
# Does not use character embeddings: set to False by default
|
|
return build_Tok2Vec_model(
|
|
width=width,
|
|
embed_size=embed_size,
|
|
pretrained_vectors=pretrained_vectors,
|
|
bilstm_depth=depth,
|
|
conv_depth=0,
|
|
maxout_pieces=maxout_pieces,
|
|
window_size=1,
|
|
subword_features=subword_features,
|
|
char_embed=False,
|
|
nM=0,
|
|
nC=0,
|
|
dropout=dropout,
|
|
)
|
|
|
|
|
|
@registry.architectures.register("spacy.HashCharEmbedBiLSTM.v1")
|
|
def hash_char_embed_bilstm_v1(
|
|
pretrained_vectors, width, depth, embed_size, maxout_pieces, nM, nC, dropout
|
|
):
|
|
# Allows using character embeddings by setting nC, nM and char_embed=True
|
|
return build_Tok2Vec_model(
|
|
width=width,
|
|
embed_size=embed_size,
|
|
pretrained_vectors=pretrained_vectors,
|
|
bilstm_depth=depth,
|
|
conv_depth=0,
|
|
maxout_pieces=maxout_pieces,
|
|
window_size=1,
|
|
subword_features=False,
|
|
char_embed=True,
|
|
nM=nM,
|
|
nC=nC,
|
|
dropout=dropout,
|
|
)
|
|
|
|
|
|
@registry.architectures.register("spacy.LayerNormalizedMaxout.v1")
|
|
def LayerNormalizedMaxout(width, maxout_pieces):
|
|
return Maxout(nO=width, nP=maxout_pieces, dropout=0.0, normalize=True)
|
|
|
|
|
|
@registry.architectures.register("spacy.MultiHashEmbed.v1")
|
|
def MultiHashEmbed(
|
|
columns, width, rows, use_subwords, pretrained_vectors, mix, dropout
|
|
):
|
|
norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"), dropout=dropout, seed=6)
|
|
if use_subwords:
|
|
prefix = HashEmbed(
|
|
nO=width, nV=rows // 2, column=columns.index("PREFIX"), dropout=dropout, seed=7
|
|
)
|
|
suffix = HashEmbed(
|
|
nO=width, nV=rows // 2, column=columns.index("SUFFIX"), dropout=dropout, seed=8
|
|
)
|
|
shape = HashEmbed(
|
|
nO=width, nV=rows // 2, column=columns.index("SHAPE"), dropout=dropout, seed=9
|
|
)
|
|
|
|
if pretrained_vectors:
|
|
glove = StaticVectors(
|
|
vectors=pretrained_vectors.data,
|
|
nO=width,
|
|
column=columns.index(ID),
|
|
dropout=dropout,
|
|
)
|
|
|
|
with Model.define_operators({">>": chain, "|": concatenate}):
|
|
if not use_subwords and not pretrained_vectors:
|
|
embed_layer = norm
|
|
else:
|
|
if use_subwords and pretrained_vectors:
|
|
concat_columns = glove | norm | prefix | suffix | shape
|
|
elif use_subwords:
|
|
concat_columns = norm | prefix | suffix | shape
|
|
else:
|
|
concat_columns = glove | norm
|
|
|
|
embed_layer = uniqued(concat_columns >> mix, column=columns.index("ORTH"))
|
|
|
|
return embed_layer
|
|
|
|
|
|
@registry.architectures.register("spacy.CharacterEmbed.v1")
|
|
def CharacterEmbed(columns, width, rows, nM, nC, features, dropout):
|
|
norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"), dropout=dropout, seed=5)
|
|
chr_embed = _character_embed.CharacterEmbed(nM=nM, nC=nC)
|
|
with Model.define_operators({">>": chain, "|": concatenate}):
|
|
embed_layer = chr_embed | features >> with_array(norm)
|
|
embed_layer.set_dim("nO", nM * nC + width)
|
|
return embed_layer
|
|
|
|
|
|
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
|
|
def MaxoutWindowEncoder(width, window_size, maxout_pieces, depth):
|
|
cnn = chain(
|
|
expand_window(window_size=window_size),
|
|
Maxout(
|
|
nO=width,
|
|
nI=width * ((window_size * 2) + 1),
|
|
nP=maxout_pieces,
|
|
dropout=0.0,
|
|
normalize=True,
|
|
),
|
|
)
|
|
model = clone(residual(cnn), depth)
|
|
model.set_dim("nO", width)
|
|
model.attrs["receptive_field"] = window_size * depth
|
|
return model
|
|
|
|
|
|
@registry.architectures.register("spacy.MishWindowEncoder.v1")
|
|
def MishWindowEncoder(width, window_size, depth):
|
|
cnn = chain(
|
|
expand_window(window_size=window_size),
|
|
Mish(nO=width, nI=width * ((window_size * 2) + 1)),
|
|
LayerNorm(width),
|
|
)
|
|
model = clone(residual(cnn), depth)
|
|
model.set_dim("nO", width)
|
|
return model
|
|
|
|
|
|
@registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
|
|
def TorchBiLSTMEncoder(width, depth):
|
|
import torch.nn
|
|
|
|
# TODO FIX
|
|
from thinc.api import PyTorchRNNWrapper
|
|
|
|
if depth == 0:
|
|
return noop()
|
|
return with_padded(
|
|
PyTorchRNNWrapper(torch.nn.LSTM(width, width // 2, depth, bidirectional=True))
|
|
)
|
|
|
|
|
|
def build_Tok2Vec_model(
|
|
width,
|
|
embed_size,
|
|
pretrained_vectors,
|
|
window_size,
|
|
maxout_pieces,
|
|
subword_features,
|
|
char_embed,
|
|
nM,
|
|
nC,
|
|
conv_depth,
|
|
bilstm_depth,
|
|
dropout,
|
|
) -> Model:
|
|
if char_embed:
|
|
subword_features = False
|
|
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
|
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
|
|
norm = HashEmbed(
|
|
nO=width, nV=embed_size, column=cols.index(NORM), dropout=None,
|
|
seed=0
|
|
)
|
|
if subword_features:
|
|
prefix = HashEmbed(
|
|
nO=width, nV=embed_size // 2, column=cols.index(PREFIX), dropout=None,
|
|
seed=1
|
|
)
|
|
suffix = HashEmbed(
|
|
nO=width, nV=embed_size // 2, column=cols.index(SUFFIX), dropout=None,
|
|
seed=2
|
|
)
|
|
shape = HashEmbed(
|
|
nO=width, nV=embed_size // 2, column=cols.index(SHAPE), dropout=None,
|
|
seed=3
|
|
)
|
|
else:
|
|
prefix, suffix, shape = (None, None, None)
|
|
if pretrained_vectors is not None:
|
|
glove = StaticVectors(
|
|
vectors=pretrained_vectors.data,
|
|
nO=width,
|
|
column=cols.index(ID),
|
|
dropout=dropout,
|
|
)
|
|
|
|
if subword_features:
|
|
columns = 5
|
|
embed = uniqued(
|
|
(glove | norm | prefix | suffix | shape)
|
|
>> Maxout(
|
|
nO=width,
|
|
nI=width * columns,
|
|
nP=3,
|
|
dropout=0.0,
|
|
normalize=True,
|
|
),
|
|
column=cols.index(ORTH),
|
|
)
|
|
else:
|
|
columns = 2
|
|
embed = uniqued(
|
|
(glove | norm)
|
|
>> Maxout(
|
|
nO=width,
|
|
nI=width * columns,
|
|
nP=3,
|
|
dropout=0.0,
|
|
normalize=True,
|
|
),
|
|
column=cols.index(ORTH),
|
|
)
|
|
elif subword_features:
|
|
columns = 4
|
|
embed = uniqued(
|
|
concatenate(norm, prefix, suffix, shape)
|
|
>> Maxout(
|
|
nO=width,
|
|
nI=width * columns,
|
|
nP=3,
|
|
dropout=0.0,
|
|
normalize=True,
|
|
),
|
|
column=cols.index(ORTH),
|
|
)
|
|
elif char_embed:
|
|
embed = _character_embed.CharacterEmbed(nM=nM, nC=nC) | FeatureExtractor(
|
|
cols
|
|
) >> with_array(norm)
|
|
reduce_dimensions = Maxout(
|
|
nO=width,
|
|
nI=nM * nC + width,
|
|
nP=3,
|
|
dropout=0.0,
|
|
normalize=True,
|
|
)
|
|
else:
|
|
embed = norm
|
|
|
|
convolution = residual(
|
|
expand_window(window_size=window_size)
|
|
>> Maxout(
|
|
nO=width,
|
|
nI=width * ((window_size * 2) + 1),
|
|
nP=maxout_pieces,
|
|
dropout=0.0,
|
|
normalize=True,
|
|
)
|
|
)
|
|
if char_embed:
|
|
tok2vec = embed >> with_array(
|
|
reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
|
|
)
|
|
else:
|
|
tok2vec = FeatureExtractor(cols) >> with_array(
|
|
embed >> convolution ** conv_depth, pad=conv_depth
|
|
)
|
|
|
|
if bilstm_depth >= 1:
|
|
tok2vec = tok2vec >> PyTorchLSTM(
|
|
nO=width, nI=width, depth=bilstm_depth, bi=True
|
|
)
|
|
if tok2vec.has_dim("nO") is not False:
|
|
tok2vec.set_dim("nO", width)
|
|
tok2vec.set_ref("embed", embed)
|
|
return tok2vec
|