mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	* Add Lemmatizer and simplify related components * Add `Lemmatizer` pipe with `lookup` and `rule` modes using the `Lookups` tables. * Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma) * Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer, or morph rules) * Remove lemmatizer from `Vocab` * Adjust many many tests Differences: * No default lookup lemmas * No special treatment of TAG in `from_array` and similar required * Easier to modify labels in a `Tagger` * No extra strings added from morphology / tag map * Fix test * Initial fix for Lemmatizer config/serialization * Adjust init test to be more generic * Adjust init test to force empty Lookups * Add simple cache to rule-based lemmatizer * Convert language-specific lemmatizers Convert language-specific lemmatizers to component lemmatizers. Remove previous lemmatizer class. * Fix French and Polish lemmatizers * Remove outdated UPOS conversions * Update Russian lemmatizer init in tests * Add minimal init/run tests for custom lemmatizers * Add option to overwrite existing lemmas * Update mode setting, lookup loading, and caching * Make `mode` an immutable property * Only enforce strict `load_lookups` for known supported modes * Move caching into individual `_lemmatize` methods * Implement strict when lang is not found in lookups * Fix tables/lookups in make_lemmatizer * Reallow provided lookups and allow for stricter checks * Add lookups asset to all Lemmatizer pipe tests * Rename lookups in lemmatizer init test * Clean up merge * Refactor lookup table loading * Add helper from `load_lemmatizer_lookups` that loads required and optional lookups tables based on settings provided by a config. Additional slight refactor of lookups: * Add `Lookups.set_table` to set a table from a provided `Table` * Reorder class definitions to be able to specify type as `Table` * Move registry assets into test methods * Refactor lookups tables config Use class methods within `Lemmatizer` to provide the config for particular modes and to load the lookups from a config. * Add pipe and score to lemmatizer * Simplify Tagger.score * Add missing import * Clean up imports and auto-format * Remove unused kwarg * Tidy up and auto-format * Update docstrings for Lemmatizer Update docstrings for Lemmatizer. Additionally modify `is_base_form` API to take `Token` instead of individual features. * Update docstrings * Remove tag map values from Tagger.add_label * Update API docs * Fix relative link in Lemmatizer API docs
		
			
				
	
	
		
			47 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			47 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Optional
 | |
| 
 | |
| from thinc.api import Model
 | |
| 
 | |
| from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
 | |
| from .stop_words import STOP_WORDS
 | |
| from .lex_attrs import LEX_ATTRS
 | |
| from .syntax_iterators import SYNTAX_ITERATORS
 | |
| from .punctuation import TOKENIZER_INFIXES
 | |
| from .lemmatizer import EnglishLemmatizer
 | |
| from ...language import Language
 | |
| from ...lookups import Lookups
 | |
| 
 | |
| 
 | |
| class EnglishDefaults(Language.Defaults):
 | |
|     tokenizer_exceptions = TOKENIZER_EXCEPTIONS
 | |
|     infixes = TOKENIZER_INFIXES
 | |
|     lex_attr_getters = LEX_ATTRS
 | |
|     syntax_iterators = SYNTAX_ITERATORS
 | |
|     stop_words = STOP_WORDS
 | |
| 
 | |
| 
 | |
| class English(Language):
 | |
|     lang = "en"
 | |
|     Defaults = EnglishDefaults
 | |
| 
 | |
| 
 | |
| @English.factory(
 | |
|     "lemmatizer",
 | |
|     assigns=["token.lemma"],
 | |
|     default_config={"model": None, "mode": "rule", "lookups": None},
 | |
|     scores=["lemma_acc"],
 | |
|     default_score_weights={"lemma_acc": 1.0},
 | |
| )
 | |
| def make_lemmatizer(
 | |
|     nlp: Language,
 | |
|     model: Optional[Model],
 | |
|     name: str,
 | |
|     mode: str,
 | |
|     lookups: Optional[Lookups],
 | |
| ):
 | |
|     lookups = EnglishLemmatizer.load_lookups(nlp.lang, mode, lookups)
 | |
|     return EnglishLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
 | |
| 
 | |
| 
 | |
| __all__ = ["English"]
 |