spaCy/spacy/tests
Daniël de Kok b052b1b47f
Fix batching regression (#12094)
* Fix batching regression

Some time ago, the spaCy v4 branch switched to the new Thinc v9
schedule. However, this introduced an error in how batching is handed.

In the PR, the batchers were changed to keep track of their step,
so that the step can be passed to the schedule. However, the issue
is that the training loop repeatedly calls the batching functions
(rather than using an infinite generator/iterator). So, the step and
therefore the schedule would be reset each epoch. Before the schedule
switch we didn't have this issue, because the old schedules were
stateful.

This PR fixes this issue by reverting the batching functions to use
a (stateful) generator. Their registry functions do accept a `Schedule`
and we convert `Schedule`s to generators.

* Update batcher docs

* Docstring fixes

* Make minibatch take iterables again as well

* Bump thinc requirement to 9.0.0.dev2

* Use type declaration

* Convert another comment into a proper type declaration
2023-01-18 18:28:30 +01:00
..
doc Merge remote-tracking branch 'upstream/master' into chore/v4-merge-master-20221222 2022-12-22 10:08:54 +01:00
lang Merge branch 'copy_master' into copy_v4 2022-12-05 08:56:15 +01:00
matcher Merge branch 'copy_master' into copy_v4 2023-01-11 18:40:55 +01:00
morphology Tidy up and auto-format 2020-08-09 22:36:23 +02:00
package Merge branch 'develop' into merge-develop-into-v4 2022-09-07 11:35:47 +02:00
parser Merge the parser refactor into v4 (#10940) 2023-01-18 11:27:45 +01:00
pipeline Fix batching regression (#12094) 2023-01-18 18:28:30 +01:00
serialize Merge the parser refactor into v4 (#10940) 2023-01-18 11:27:45 +01:00
tokenizer Match private networks as URLs (#11121) 2022-08-11 11:26:26 +02:00
training Fix batching regression (#12094) 2023-01-18 18:28:30 +01:00
vocab_vectors Merge branch 'copy_master' into copy_v4 2022-12-05 08:56:15 +01:00
__init__.py Revert #4334 2019-09-29 17:32:12 +02:00
conftest.py Fix v4 branch to build against Thinc v9 (#11921) 2022-12-17 14:32:19 +01:00
enable_gpu.py Set up GPU CI testing (#7293) 2021-04-22 14:58:29 +02:00
README.md Remove sentiment extension (#11722) 2022-11-23 13:09:32 +01:00
test_architectures.py Tidy up code 2021-06-28 12:08:15 +02:00
test_cli_app.py fix processing of "auto" in convert (#12050) 2023-01-05 10:21:00 +01:00
test_cli.py fix processing of "auto" in convert (#12050) 2023-01-05 10:21:00 +01:00
test_displacy.py Don't throw an error if using displacy on an unset span key (#11845) 2022-11-28 10:01:09 +01:00
test_errors.py use metaclass to decorate errors (#9593) 2021-11-03 15:29:32 +01:00
test_language.py Improve score_cats for use with multiple textcat components (#11820) 2023-01-09 11:43:48 +01:00
test_misc.py Merge the parser refactor into v4 (#10940) 2023-01-18 11:27:45 +01:00
test_models.py Rename test helper method with non-test_ name (#11701) 2022-10-25 14:53:18 +02:00
test_pickles.py Include noun chunks method when pickling Vocab 2021-02-12 13:27:46 +01:00
test_scorer.py Restore v2 token_acc score implementation (#12073) 2023-01-11 08:01:47 +01:00
test_symbols.py Consolidate and freeze symbols (#11352) 2022-09-02 09:08:40 +02:00
test_ty.py Custom component types in spacy.ty (#9469) 2021-10-21 15:31:06 +02:00
util.py account for NER labels with a hyphen in the name (#10960) 2022-06-17 20:02:37 +01:00

spaCy tests

spaCy uses the pytest framework for testing. For more info on this, see the pytest documentation.

Tests for spaCy modules and classes live in their own directories of the same name. For example, tests for the Tokenizer can be found in /tests/tokenizer. All test modules (i.e. directories) also need to be listed in spaCy's setup.py. To be interpreted and run, all test files and test functions need to be prefixed with test_.

⚠️ Important note: As part of our new model training infrastructure, we've moved all model tests to the spacy-models repository. This allows us to test the models separately from the core library functionality.

Table of contents

  1. Running the tests
  2. Dos and don'ts
  3. Parameters
  4. Fixtures
  5. Helpers and utilities
  6. Contributing to the tests

Running the tests

To show print statements, run the tests with py.test -s. To abort after the first failure, run them with py.test -x.

py.test spacy                        # run basic tests
py.test spacy --slow                 # run basic and slow tests

You can also run tests in a specific file or directory, or even only one specific test:

py.test spacy/tests/tokenizer  # run all tests in directory
py.test spacy/tests/tokenizer/test_exceptions.py # run all tests in file
py.test spacy/tests/tokenizer/test_exceptions.py::test_tokenizer_handles_emoji # run specific test

Dos and don'ts

To keep the behavior of the tests consistent and predictable, we try to follow a few basic conventions:

  • Test names should follow a pattern of test_[module]_[tested behaviour]. For example: test_tokenizer_keeps_email.
  • If you're testing for a bug reported in a specific issue, always create a regression test. Regression tests should be named test_issue[ISSUE NUMBER] and live in the regression directory.
  • Only use @pytest.mark.xfail for tests that should pass, but currently fail. To test for desired negative behavior, use assert not in your test.
  • Very extensive tests that take a long time to run should be marked with @pytest.mark.slow. If your slow test is testing important behavior, consider adding an additional simpler version.
  • If tests require loading the models, they should be added to the spacy-models tests.
  • Before requiring the models, always make sure there is no other way to test the particular behavior. In a lot of cases, it's sufficient to simply create a Doc object manually. See the section on helpers and utility functions for more info on this.
  • Avoid unnecessary imports. There should never be a need to explicitly import spaCy at the top of a file, and many components are available as fixtures. You should also avoid wildcard imports (from module import *).
  • If you're importing from spaCy, always use absolute imports. For example: from spacy.language import Language.
  • Try to keep the tests readable and concise. Use clear and descriptive variable names (doc, tokens and text are great), keep it short and only test for one behavior at a time.

Parameters

If the test cases can be extracted from the test, always parametrize them instead of hard-coding them into the test:

@pytest.mark.parametrize('text', ["google.com", "spacy.io"])
def test_tokenizer_keep_urls(tokenizer, text):
    tokens = tokenizer(text)
    assert len(tokens) == 1

This will run the test once for each text value. Even if you're only testing one example, it's usually best to specify it as a parameter. This will later make it easier for others to quickly add additional test cases without having to modify the test.

You can also specify parameters as tuples to test with multiple values per test:

@pytest.mark.parametrize('text,length', [("U.S.", 1), ("us.", 2), ("(U.S.", 2)])

To test for combinations of parameters, you can add several parametrize markers:

@pytest.mark.parametrize('text', ["A test sentence", "Another sentence"])
@pytest.mark.parametrize('punct', ['.', '!', '?'])

This will run the test with all combinations of the two parameters text and punct. Use this feature sparingly, though, as it can easily cause unnecessary or undesired test bloat.

Fixtures

Fixtures to create instances of spaCy objects and other components should only be defined once in the global conftest.py. We avoid having per-directory conftest files, as this can easily lead to confusion.

These are the main fixtures that are currently available:

Fixture Description
tokenizer Basic, language-independent tokenizer. Identical to the xx language class.
en_tokenizer, de_tokenizer, ... Creates an English, German etc. tokenizer.
en_vocab Creates an instance of the English Vocab.

The fixtures can be used in all tests by simply setting them as an argument, like this:

def test_module_do_something(en_tokenizer):
    tokens = en_tokenizer("Some text here")

If all tests in a file require a specific configuration, or use the same complex example, it can be helpful to create a separate fixture. This fixture should be added at the top of each file. Make sure to use descriptive names for these fixtures and don't override any of the global fixtures listed above. From looking at a test, it should immediately be clear which fixtures are used, and where they are coming from.

Helpers and utilities

Our new test setup comes with a few handy utility functions that can be imported from util.py.

Constructing a Doc object manually

Loading the models is expensive and not necessary if you're not actually testing the model performance. If all you need is a Doc object with annotations like heads, POS tags or the dependency parse, you can construct it manually.

def test_doc_token_api_strings(en_vocab):
    words = ["Give", "it", "back", "!", "He", "pleaded", "."]
    pos = ['VERB', 'PRON', 'PART', 'PUNCT', 'PRON', 'VERB', 'PUNCT']
    heads = [0, 0, 0, 0, 5, 5, 5]
    deps = ['ROOT', 'dobj', 'prt', 'punct', 'nsubj', 'ROOT', 'punct']

    doc = Doc(en_vocab, words=words, pos=pos, heads=heads, deps=deps)
    assert doc[0].text == 'Give'
    assert doc[0].lower_ == 'give'
    assert doc[0].pos_ == 'VERB'
    assert doc[0].dep_ == 'ROOT'

Other utilities

Name Description
apply_transition_sequence(parser, doc, sequence) Perform a series of pre-specified transitions, to put the parser in a desired state.
add_vecs_to_vocab(vocab, vectors) Add list of vector tuples ([("text", [1, 2, 3])]) to given vocab. All vectors need to have the same length.
get_cosine(vec1, vec2) Get cosine for two given vectors.
assert_docs_equal(doc1, doc2) Compare two Doc objects and assert that they're equal. Tests for tokens, tags, dependencies and entities.

Contributing to the tests

There's still a long way to go to finally reach 100% test coverage and we'd appreciate your help! 🙌 You can open an issue on our issue tracker and label it tests, or make a pull request to this repository.

📖 For more information on contributing to spaCy in general, check out our contribution guidelines.