spaCy/spacy/tests/pipeline/test_edit_tree_lemmatizer.py
Daniël de Kok 5e297aa20e
Add TrainablePipe.{distill,get_teacher_student_loss} (#12016)
* Add `TrainablePipe.{distill,get_teacher_student_loss}`

This change adds two methods:

- `TrainablePipe::distill` which performs a training step of a
   student pipe on a teacher pipe, giving a batch of `Doc`s.
- `TrainablePipe::get_teacher_student_loss` computes the loss
  of a student relative to the teacher.

The `distill` or `get_teacher_student_loss` methods are also implemented
in the tagger, edit tree lemmatizer, and parser pipes, to enable
distillation in those pipes and as an example for other pipes.

* Fix stray `Beam` import

* Fix incorrect import

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* TrainablePipe.distill: use `Iterable[Example]`

* Add Pipe.is_distillable method

* Add `validate_distillation_examples`

This first calls `validate_examples` and then checks that the
student/teacher tokens are the same.

* Update distill documentation

* Add distill documentation for all pipes that support distillation

* Fix incorrect identifier

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Add comment to explain `is_distillable`

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2023-01-16 10:25:53 +01:00

388 lines
12 KiB
Python

from typing import cast
import pickle
import pytest
from hypothesis import given
import hypothesis.strategies as st
from spacy import util
from spacy.lang.en import English
from spacy.language import Language
from spacy.pipeline._edit_tree_internals.edit_trees import EditTrees
from spacy.pipeline.trainable_pipe import TrainablePipe
from spacy.training import Example
from spacy.strings import StringStore
from spacy.util import make_tempdir
TRAIN_DATA = [
("She likes green eggs", {"lemmas": ["she", "like", "green", "egg"]}),
("Eat blue ham", {"lemmas": ["eat", "blue", "ham"]}),
]
PARTIAL_DATA = [
# partial annotation
("She likes green eggs", {"lemmas": ["", "like", "green", ""]}),
# misaligned partial annotation
(
"He hates green eggs",
{
"words": ["He", "hat", "es", "green", "eggs"],
"lemmas": ["", "hat", "e", "green", ""],
},
),
]
def test_initialize_examples():
nlp = Language()
lemmatizer = nlp.add_pipe("trainable_lemmatizer")
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
# you shouldn't really call this more than once, but for testing it should be fine
nlp.initialize(get_examples=lambda: train_examples)
with pytest.raises(TypeError):
nlp.initialize(get_examples=lambda: None)
with pytest.raises(TypeError):
nlp.initialize(get_examples=lambda: train_examples[0])
with pytest.raises(TypeError):
nlp.initialize(get_examples=lambda: [])
with pytest.raises(TypeError):
nlp.initialize(get_examples=train_examples)
def test_initialize_from_labels():
nlp = Language()
lemmatizer = nlp.add_pipe("trainable_lemmatizer")
lemmatizer.min_tree_freq = 1
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
nlp.initialize(get_examples=lambda: train_examples)
nlp2 = Language()
lemmatizer2 = nlp2.add_pipe("trainable_lemmatizer")
lemmatizer2.initialize(
# We want to check that the strings in replacement nodes are
# added to the string store. Avoid that they get added through
# the examples.
get_examples=lambda: train_examples[:1],
labels=lemmatizer.label_data,
)
assert lemmatizer2.tree2label == {1: 0, 3: 1, 4: 2, 6: 3}
assert lemmatizer2.label_data == {
"trees": [
{"orig": "S", "subst": "s"},
{
"prefix_len": 1,
"suffix_len": 0,
"prefix_tree": 0,
"suffix_tree": 4294967295,
},
{"orig": "s", "subst": ""},
{
"prefix_len": 0,
"suffix_len": 1,
"prefix_tree": 4294967295,
"suffix_tree": 2,
},
{
"prefix_len": 0,
"suffix_len": 0,
"prefix_tree": 4294967295,
"suffix_tree": 4294967295,
},
{"orig": "E", "subst": "e"},
{
"prefix_len": 1,
"suffix_len": 0,
"prefix_tree": 5,
"suffix_tree": 4294967295,
},
],
"labels": (1, 3, 4, 6),
}
def test_no_data():
# Test that the lemmatizer provides a nice error when there's no tagging data / labels
TEXTCAT_DATA = [
("I'm so happy.", {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}),
("I'm so angry", {"cats": {"POSITIVE": 0.0, "NEGATIVE": 1.0}}),
]
nlp = English()
nlp.add_pipe("trainable_lemmatizer")
nlp.add_pipe("textcat")
train_examples = []
for t in TEXTCAT_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
with pytest.raises(ValueError):
nlp.initialize(get_examples=lambda: train_examples)
def test_incomplete_data():
# Test that the lemmatizer works with incomplete information
nlp = English()
lemmatizer = nlp.add_pipe("trainable_lemmatizer")
lemmatizer.min_tree_freq = 1
train_examples = []
for t in PARTIAL_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["trainable_lemmatizer"] < 0.00001
# test the trained model
test_text = "She likes blue eggs"
doc = nlp(test_text)
assert doc[1].lemma_ == "like"
assert doc[2].lemma_ == "blue"
def test_overfitting_IO():
nlp = English()
lemmatizer = nlp.add_pipe("trainable_lemmatizer")
lemmatizer.min_tree_freq = 1
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["trainable_lemmatizer"] < 0.00001
test_text = "She likes blue eggs"
doc = nlp(test_text)
assert doc[0].lemma_ == "she"
assert doc[1].lemma_ == "like"
assert doc[2].lemma_ == "blue"
assert doc[3].lemma_ == "egg"
# Check model after a {to,from}_disk roundtrip
with util.make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
assert doc2[0].lemma_ == "she"
assert doc2[1].lemma_ == "like"
assert doc2[2].lemma_ == "blue"
assert doc2[3].lemma_ == "egg"
# Check model after a {to,from}_bytes roundtrip
nlp_bytes = nlp.to_bytes()
nlp3 = English()
nlp3.add_pipe("trainable_lemmatizer")
nlp3.from_bytes(nlp_bytes)
doc3 = nlp3(test_text)
assert doc3[0].lemma_ == "she"
assert doc3[1].lemma_ == "like"
assert doc3[2].lemma_ == "blue"
assert doc3[3].lemma_ == "egg"
# Check model after a pickle roundtrip.
nlp_bytes = pickle.dumps(nlp)
nlp4 = pickle.loads(nlp_bytes)
doc4 = nlp4(test_text)
assert doc4[0].lemma_ == "she"
assert doc4[1].lemma_ == "like"
assert doc4[2].lemma_ == "blue"
assert doc4[3].lemma_ == "egg"
def test_is_distillable():
nlp = English()
lemmatizer = nlp.add_pipe("trainable_lemmatizer")
assert lemmatizer.is_distillable
def test_distill():
teacher = English()
teacher_lemmatizer = teacher.add_pipe("trainable_lemmatizer")
teacher_lemmatizer.min_tree_freq = 1
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(teacher.make_doc(t[0]), t[1]))
optimizer = teacher.initialize(get_examples=lambda: train_examples)
for i in range(50):
losses = {}
teacher.update(train_examples, sgd=optimizer, losses=losses)
assert losses["trainable_lemmatizer"] < 0.00001
student = English()
student_lemmatizer = student.add_pipe("trainable_lemmatizer")
student_lemmatizer.min_tree_freq = 1
student_lemmatizer.initialize(
get_examples=lambda: train_examples, labels=teacher_lemmatizer.label_data
)
distill_examples = [
Example.from_dict(teacher.make_doc(t[0]), {}) for t in TRAIN_DATA
]
for i in range(50):
losses = {}
student_lemmatizer.distill(
teacher_lemmatizer, distill_examples, sgd=optimizer, losses=losses
)
assert losses["trainable_lemmatizer"] < 0.00001
test_text = "She likes blue eggs"
doc = student(test_text)
assert doc[0].lemma_ == "she"
assert doc[1].lemma_ == "like"
assert doc[2].lemma_ == "blue"
assert doc[3].lemma_ == "egg"
def test_lemmatizer_requires_labels():
nlp = English()
nlp.add_pipe("trainable_lemmatizer")
with pytest.raises(ValueError):
nlp.initialize()
def test_lemmatizer_label_data():
nlp = English()
lemmatizer = nlp.add_pipe("trainable_lemmatizer")
lemmatizer.min_tree_freq = 1
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
nlp.initialize(get_examples=lambda: train_examples)
nlp2 = English()
lemmatizer2 = nlp2.add_pipe("trainable_lemmatizer")
lemmatizer2.initialize(
get_examples=lambda: train_examples, labels=lemmatizer.label_data
)
# Verify that the labels and trees are the same.
assert lemmatizer.labels == lemmatizer2.labels
assert lemmatizer.trees.to_bytes() == lemmatizer2.trees.to_bytes()
def test_dutch():
strings = StringStore()
trees = EditTrees(strings)
tree = trees.add("deelt", "delen")
assert trees.tree_to_str(tree) == "(m 0 3 () (m 0 2 (s '' 'l') (s 'lt' 'n')))"
tree = trees.add("gedeeld", "delen")
assert (
trees.tree_to_str(tree) == "(m 2 3 (s 'ge' '') (m 0 2 (s '' 'l') (s 'ld' 'n')))"
)
def test_from_to_bytes():
strings = StringStore()
trees = EditTrees(strings)
trees.add("deelt", "delen")
trees.add("gedeeld", "delen")
b = trees.to_bytes()
trees2 = EditTrees(strings)
trees2.from_bytes(b)
# Verify that the nodes did not change.
assert len(trees) == len(trees2)
for i in range(len(trees)):
assert trees.tree_to_str(i) == trees2.tree_to_str(i)
# Reinserting the same trees should not add new nodes.
trees2.add("deelt", "delen")
trees2.add("gedeeld", "delen")
assert len(trees) == len(trees2)
def test_from_to_disk():
strings = StringStore()
trees = EditTrees(strings)
trees.add("deelt", "delen")
trees.add("gedeeld", "delen")
trees2 = EditTrees(strings)
with make_tempdir() as temp_dir:
trees_file = temp_dir / "edit_trees.bin"
trees.to_disk(trees_file)
trees2 = trees2.from_disk(trees_file)
# Verify that the nodes did not change.
assert len(trees) == len(trees2)
for i in range(len(trees)):
assert trees.tree_to_str(i) == trees2.tree_to_str(i)
# Reinserting the same trees should not add new nodes.
trees2.add("deelt", "delen")
trees2.add("gedeeld", "delen")
assert len(trees) == len(trees2)
@given(st.text(), st.text())
def test_roundtrip(form, lemma):
strings = StringStore()
trees = EditTrees(strings)
tree = trees.add(form, lemma)
assert trees.apply(tree, form) == lemma
@given(st.text(alphabet="ab"), st.text(alphabet="ab"))
def test_roundtrip_small_alphabet(form, lemma):
# Test with small alphabets to have more overlap.
strings = StringStore()
trees = EditTrees(strings)
tree = trees.add(form, lemma)
assert trees.apply(tree, form) == lemma
def test_unapplicable_trees():
strings = StringStore()
trees = EditTrees(strings)
tree3 = trees.add("deelt", "delen")
# Replacement fails.
assert trees.apply(tree3, "deeld") == None
# Suffix + prefix are too large.
assert trees.apply(tree3, "de") == None
def test_empty_strings():
strings = StringStore()
trees = EditTrees(strings)
no_change = trees.add("xyz", "xyz")
empty = trees.add("", "")
assert no_change == empty
def test_save_activations():
nlp = English()
lemmatizer = cast(TrainablePipe, nlp.add_pipe("trainable_lemmatizer"))
lemmatizer.min_tree_freq = 1
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
nlp.initialize(get_examples=lambda: train_examples)
nO = lemmatizer.model.get_dim("nO")
doc = nlp("This is a test.")
assert "trainable_lemmatizer" not in doc.activations
lemmatizer.save_activations = True
doc = nlp("This is a test.")
assert list(doc.activations["trainable_lemmatizer"].keys()) == [
"probabilities",
"tree_ids",
]
assert doc.activations["trainable_lemmatizer"]["probabilities"].shape == (5, nO)
assert doc.activations["trainable_lemmatizer"]["tree_ids"].shape == (5,)