mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			155 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			155 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
title: PhraseMatcher
 | 
						|
teaser: Match sequences of tokens, based on documents
 | 
						|
tag: class
 | 
						|
source: spacy/matcher/phrasematcher.pyx
 | 
						|
new: 2
 | 
						|
---
 | 
						|
 | 
						|
The `PhraseMatcher` lets you efficiently match large terminology lists. While
 | 
						|
the [`Matcher`](/api/matcher) lets you match sequences based on lists of token
 | 
						|
descriptions, the `PhraseMatcher` accepts match patterns in the form of `Doc`
 | 
						|
objects.
 | 
						|
 | 
						|
## PhraseMatcher.\_\_init\_\_ {#init tag="method"}
 | 
						|
 | 
						|
Create the rule-based `PhraseMatcher`. Setting a different `attr` to match on
 | 
						|
will change the token attributes that will be compared to determine a match. By
 | 
						|
default, the incoming `Doc` is checked for sequences of tokens with the same
 | 
						|
`ORTH` value, i.e. the verbatim token text. Matching on the attribute `LOWER`
 | 
						|
will result in case-insensitive matching, since only the lowercase token texts
 | 
						|
are compared. In theory, it's also possible to match on sequences of the same
 | 
						|
part-of-speech tags or dependency labels.
 | 
						|
 | 
						|
If `validate=True` is set, additional validation is performed when pattern are
 | 
						|
added. At the moment, it will check whether a `Doc` has attributes assigned that
 | 
						|
aren't necessary to produce the matches (for example, part-of-speech tags if the
 | 
						|
`PhraseMatcher` matches on the token text). Since this can often lead to
 | 
						|
significantly worse performance when creating the pattern, a `UserWarning` will
 | 
						|
be shown.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> from spacy.matcher import PhraseMatcher
 | 
						|
> matcher = PhraseMatcher(nlp.vocab)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name                                    | Type            | Description                                                                                 |
 | 
						|
| --------------------------------------- | --------------- | ------------------------------------------------------------------------------------------- |
 | 
						|
| `vocab`                                 | `Vocab`         | The vocabulary object, which must be shared with the documents the matcher will operate on. |
 | 
						|
| `attr` <Tag variant="new">2.1</Tag>     | int / unicode   | The token attribute to match on. Defaults to `ORTH`, i.e. the verbatim token text.          |
 | 
						|
| `validate` <Tag variant="new">2.1</Tag> | bool            | Validate patterns added to the matcher.                                                     |
 | 
						|
| **RETURNS**                             | `PhraseMatcher` | The newly constructed object.                                                               |
 | 
						|
 | 
						|
<Infobox title="Changed in v2.1" variant="warning">
 | 
						|
 | 
						|
As of v2.1, the `PhraseMatcher` doesn't have a phrase length limit anymore, so
 | 
						|
the `max_length` argument is now deprecated.
 | 
						|
 | 
						|
</Infobox>
 | 
						|
 | 
						|
## PhraseMatcher.\_\_call\_\_ {#call tag="method"}
 | 
						|
 | 
						|
Find all token sequences matching the supplied patterns on the `Doc`.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> from spacy.matcher import PhraseMatcher
 | 
						|
>
 | 
						|
> matcher = PhraseMatcher(nlp.vocab)
 | 
						|
> matcher.add("OBAMA", None, nlp("Barack Obama"))
 | 
						|
> doc = nlp("Barack Obama lifts America one last time in emotional farewell")
 | 
						|
> matches = matcher(doc)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type  | Description                                                                                                                                                              |
 | 
						|
| ----------- | ----- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
 | 
						|
| `doc`       | `Doc` | The document to match over.                                                                                                                                              |
 | 
						|
| **RETURNS** | list  | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end]`. The `match_id` is the ID of the added match pattern. |
 | 
						|
 | 
						|
## PhraseMatcher.pipe {#pipe tag="method"}
 | 
						|
 | 
						|
Match a stream of documents, yielding them in turn.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
>   from spacy.matcher import PhraseMatcher
 | 
						|
>   matcher = PhraseMatcher(nlp.vocab)
 | 
						|
>   for doc in matcher.pipe(texts, batch_size=50):
 | 
						|
>       pass
 | 
						|
> ```
 | 
						|
 | 
						|
| Name         | Type     | Description                                               |
 | 
						|
| ------------ | -------- | --------------------------------------------------------- |
 | 
						|
| `docs`       | iterable | A stream of documents.                                    |
 | 
						|
| `batch_size` | int      | The number of documents to accumulate into a working set. |
 | 
						|
| **YIELDS**   | `Doc`    | Documents, in order.                                      |
 | 
						|
 | 
						|
## PhraseMatcher.\_\_len\_\_ {#len tag="method"}
 | 
						|
 | 
						|
Get the number of rules added to the matcher. Note that this only returns the
 | 
						|
number of rules (identical with the number of IDs), not the number of individual
 | 
						|
patterns.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
>   matcher = PhraseMatcher(nlp.vocab)
 | 
						|
>   assert len(matcher) == 0
 | 
						|
>   matcher.add("OBAMA", None, nlp("Barack Obama"))
 | 
						|
>   assert len(matcher) == 1
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type | Description          |
 | 
						|
| ----------- | ---- | -------------------- |
 | 
						|
| **RETURNS** | int  | The number of rules. |
 | 
						|
 | 
						|
## PhraseMatcher.\_\_contains\_\_ {#contains tag="method"}
 | 
						|
 | 
						|
Check whether the matcher contains rules for a match ID.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
>   matcher = PhraseMatcher(nlp.vocab)
 | 
						|
>   assert "OBAMA" not in matcher
 | 
						|
>   matcher.add("OBAMA", None, nlp("Barack Obama"))
 | 
						|
>   assert "OBAMA" in matcher
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type    | Description                                           |
 | 
						|
| ----------- | ------- | ----------------------------------------------------- |
 | 
						|
| `key`       | unicode | The match ID.                                         |
 | 
						|
| **RETURNS** | bool    | Whether the matcher contains rules for this match ID. |
 | 
						|
 | 
						|
## PhraseMatcher.add {#add tag="method"}
 | 
						|
 | 
						|
Add a rule to the matcher, consisting of an ID key, one or more patterns, and a
 | 
						|
callback function to act on the matches. The callback function will receive the
 | 
						|
arguments `matcher`, `doc`, `i` and `matches`. If a pattern already exists for
 | 
						|
the given ID, the patterns will be extended. An `on_match` callback will be
 | 
						|
overwritten.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
>   def on_match(matcher, doc, id, matches):
 | 
						|
>       print('Matched!', matches)
 | 
						|
>
 | 
						|
>   matcher = PhraseMatcher(nlp.vocab)
 | 
						|
>   matcher.add("OBAMA", on_match, nlp("Barack Obama"))
 | 
						|
>   matcher.add("HEALTH", on_match, nlp("health care reform"),
 | 
						|
>                                   nlp("healthcare reform"))
 | 
						|
>   doc = nlp("Barack Obama urges Congress to find courage to defend his healthcare reforms")
 | 
						|
>   matches = matcher(doc)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name       | Type               | Description                                                                                   |
 | 
						|
| ---------- | ------------------ | --------------------------------------------------------------------------------------------- |
 | 
						|
| `match_id` | unicode            | An ID for the thing you're matching.                                                          |
 | 
						|
| `on_match` | callable or `None` | Callback function to act on matches. Takes the arguments `matcher`, `doc`, `i` and `matches`. |
 | 
						|
| `*docs`    | list               | `Doc` objects of the phrases to match.                                                        |
 |