title |
teaser |
tag |
source |
Tokenizer |
Segment text into words, punctuations marks, etc. |
class |
spacy/tokenizer.pyx |
Default config
[nlp.tokenizer]
@tokenizers = "spacy.Tokenizer.v1"
Segment text, and create Doc
objects with the discovered segment boundaries.
For a deeper understanding, see the docs on
how spaCy's tokenizer works.
The tokenizer is typically created automatically when a
Language
subclass is initialized and it reads its settings
like punctuation and special case rules from the
Language.Defaults
provided by the language subclass.
Tokenizer.__init__
Create a Tokenizer
to create Doc
objects given unicode text. For examples
of how to construct a custom tokenizer with different tokenization rules, see
the
usage documentation.
Example
# Construction 1
from spacy.tokenizer import Tokenizer
from spacy.lang.en import English
nlp = English()
# Create a blank Tokenizer with just the English vocab
tokenizer = Tokenizer(nlp.vocab)
# Construction 2
from spacy.lang.en import English
nlp = English()
# Create a Tokenizer with the default settings for English
# including punctuation rules and exceptions
tokenizer = nlp.tokenizer
Name |
Description |
vocab |
A storage container for lexical types. Vocab |
rules |
Exceptions and special-cases for the tokenizer. Optional[Dict[str, List[Dict[int, str]]]] |
prefix_search |
A function matching the signature of re.compile(string).search to match prefixes. Optional[Callablestr], Optional[Match] |
suffix_search |
A function matching the signature of re.compile(string).search to match suffixes. Optional[Callablestr], Optional[Match] |
infix_finditer |
A function matching the signature of re.compile(string).finditer to find infixes. Optional[Callablestr], Iterator[Match] |
token_match |
A function matching the signature of re.compile(string).match to find token matches. Optional[Callablestr], Optional[Match] |
url_match |
A function matching the signature of re.compile(string).match to find token matches after considering prefixes and suffixes. Optional[Callablestr], Optional[Match] |
Tokenizer.__call__
Tokenize a string.
Example
tokens = tokenizer("This is a sentence")
assert len(tokens) == 4
Name |
Description |
string |
The string to tokenize. str |
RETURNS |
A container for linguistic annotations. Doc |
Tokenizer.pipe
Tokenize a stream of texts.
Example
texts = ["One document.", "...", "Lots of documents"]
for doc in tokenizer.pipe(texts, batch_size=50):
pass
Name |
Description |
texts |
A sequence of unicode texts. Iterable[str] |
batch_size |
The number of texts to accumulate in an internal buffer. Defaults to 1000 . int |
YIELDS |
The tokenized Doc objects, in order. Doc |
Tokenizer.find_infix
Find internal split points of the string.
Name |
Description |
string |
The string to split. str |
RETURNS |
A list of re.MatchObject objects that have .start() and .end() methods, denoting the placement of internal segment separators, e.g. hyphens. List[Match] |
Tokenizer.find_prefix
Find the length of a prefix that should be segmented from the string, or None
if no prefix rules match.
Name |
Description |
string |
The string to segment. str |
RETURNS |
The length of the prefix if present, otherwise None . Optional[int] |
Tokenizer.find_suffix
Find the length of a suffix that should be segmented from the string, or None
if no suffix rules match.
Name |
Description |
string |
The string to segment. str |
RETURNS |
The length of the suffix if present, otherwise None . Optional[int] |
Tokenizer.add_special_case
Add a special-case tokenization rule. This mechanism is also used to add custom
tokenizer exceptions to the language data. See the usage guide on
adding languages and
linguistic features for more details
and examples.
Example
from spacy.attrs import ORTH, NORM
case = [{ORTH: "do"}, {ORTH: "n't", NORM: "not"}]
tokenizer.add_special_case("don't", case)
Name |
Description |
string |
The string to specially tokenize. str |
token_attrs |
A sequence of dicts, where each dict describes a token and its attributes. The ORTH fields of the attributes must exactly match the string when they are concatenated. Iterable[Dict[int, str]] |
Tokenizer.explain
Tokenize a string with a slow debugging tokenizer that provides information
about which tokenizer rule or pattern was matched for each token. The tokens
produced are identical to Tokenizer.__call__
except for whitespace tokens.
Example
tok_exp = nlp.tokenizer.explain("(don't)")
assert [t[0] for t in tok_exp] == ["PREFIX", "SPECIAL-1", "SPECIAL-2", "SUFFIX"]
assert [t[1] for t in tok_exp] == ["(", "do", "n't", ")"]
Name |
Description |
string |
The string to tokenize with the debugging tokenizer. str |
RETURNS |
A list of (pattern_string, token_string) tuples. List[Tuple[str, str]] |
Tokenizer.to_disk
Serialize the tokenizer to disk.
Example
tokenizer = Tokenizer(nlp.vocab)
tokenizer.to_disk("/path/to/tokenizer")
Name |
Description |
path |
A path to a directory, which will be created if it doesn't exist. Paths may be either strings or Path -like objects. Union[str, Path] |
keyword-only |
|
exclude |
String names of serialization fields to exclude. Iterable[str] |
Tokenizer.from_disk
Load the tokenizer from disk. Modifies the object in place and returns it.
Example
tokenizer = Tokenizer(nlp.vocab)
tokenizer.from_disk("/path/to/tokenizer")
Name |
Description |
path |
A path to a directory. Paths may be either strings or Path -like objects. Union[str, Path] |
keyword-only |
|
exclude |
String names of serialization fields to exclude. Iterable[str] |
RETURNS |
The modified Tokenizer object. Tokenizer |
Tokenizer.to_bytes
Example
tokenizer = tokenizer(nlp.vocab)
tokenizer_bytes = tokenizer.to_bytes()
Serialize the tokenizer to a bytestring.
Name |
Description |
keyword-only |
|
exclude |
String names of serialization fields to exclude. Iterable[str] |
RETURNS |
The serialized form of the Tokenizer object. bytes |
Tokenizer.from_bytes
Load the tokenizer from a bytestring. Modifies the object in place and returns
it.
Example
tokenizer_bytes = tokenizer.to_bytes()
tokenizer = Tokenizer(nlp.vocab)
tokenizer.from_bytes(tokenizer_bytes)
Name |
Description |
bytes_data |
The data to load from. bytes |
keyword-only |
|
exclude |
String names of serialization fields to exclude. Iterable[str] |
RETURNS |
The Tokenizer object. Tokenizer |
Attributes
Name |
Description |
vocab |
The vocab object of the parent Doc . Vocab |
prefix_search |
A function to find segment boundaries from the start of a string. Returns the length of the segment, or None . Optional[Callablestr], Optional[Match] |
suffix_search |
A function to find segment boundaries from the end of a string. Returns the length of the segment, or None . Optional[Callablestr], Optional[Match] |
infix_finditer |
A function to find internal segment separators, e.g. hyphens. Returns a (possibly empty) sequence of re.MatchObject objects. Optional[Callablestr], Iterator[Match] |
token_match |
A function matching the signature of re.compile(string).match to find token matches. Returns an re.MatchObject or None . Optional[Callablestr], Optional[Match] |
rules |
A dictionary of tokenizer exceptions and special cases. Optional[Dict[str, List[Dict[int, str]]]] |
Serialization fields
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the exclude
argument.
Example
data = tokenizer.to_bytes(exclude=["vocab", "exceptions"])
tokenizer.from_disk("./data", exclude=["token_match"])
Name |
Description |
vocab |
The shared Vocab . |
prefix_search |
The prefix rules. |
suffix_search |
The suffix rules. |
infix_finditer |
The infix rules. |
token_match |
The token match expression. |
exceptions |
The tokenizer exception rules. |