mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			269 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			269 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
title: KnowledgeBase
 | 
						|
teaser:
 | 
						|
  A storage class for entities and aliases of a specific knowledge base
 | 
						|
  (ontology)
 | 
						|
tag: class
 | 
						|
source: spacy/kb.pyx
 | 
						|
new: 2.2
 | 
						|
---
 | 
						|
 | 
						|
The `KnowledgeBase` object provides a method to generate
 | 
						|
[`Candidate`](/api/kb/#candidate_init) objects, which are plausible external
 | 
						|
identifiers given a certain textual mention. Each such `Candidate` holds
 | 
						|
information from the relevant KB entities, such as its frequency in text and
 | 
						|
possible aliases. Each entity in the knowledge base also has a pretrained entity
 | 
						|
vector of a fixed size.
 | 
						|
 | 
						|
## KnowledgeBase.\_\_init\_\_ {#init tag="method"}
 | 
						|
 | 
						|
Create the knowledge base.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> from spacy.kb import KnowledgeBase
 | 
						|
> vocab = nlp.vocab
 | 
						|
> kb = KnowledgeBase(vocab=vocab, entity_vector_length=64)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name                   | Type    | Description                              |
 | 
						|
| ---------------------- | ------- | ---------------------------------------- |
 | 
						|
| `vocab`                | `Vocab` | A `Vocab` object.                        |
 | 
						|
| `entity_vector_length` | int     | Length of the fixed-size entity vectors. |
 | 
						|
 | 
						|
## KnowledgeBase.entity_vector_length {#entity_vector_length tag="property"}
 | 
						|
 | 
						|
The length of the fixed-size entity vectors in the knowledge base.
 | 
						|
 | 
						|
| Name        | Type | Description                              |
 | 
						|
| ----------- | ---- | ---------------------------------------- |
 | 
						|
| **RETURNS** | int  | Length of the fixed-size entity vectors. |
 | 
						|
 | 
						|
## KnowledgeBase.add_entity {#add_entity tag="method"}
 | 
						|
 | 
						|
Add an entity to the knowledge base, specifying its corpus frequency and entity
 | 
						|
vector, which should be of length
 | 
						|
[`entity_vector_length`](/api/kb#entity_vector_length).
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> kb.add_entity(entity="Q42", freq=32, entity_vector=vector1)
 | 
						|
> kb.add_entity(entity="Q463035", freq=111, entity_vector=vector2)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name            | Type   | Description                                     |
 | 
						|
| --------------- | ------ | ----------------------------------------------- |
 | 
						|
| `entity`        | str    | The unique entity identifier                    |
 | 
						|
| `freq`          | float  | The frequency of the entity in a typical corpus |
 | 
						|
| `entity_vector` | vector | The pretrained vector of the entity             |
 | 
						|
 | 
						|
## KnowledgeBase.set_entities {#set_entities tag="method"}
 | 
						|
 | 
						|
Define the full list of entities in the knowledge base, specifying the corpus
 | 
						|
frequency and entity vector for each entity.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> kb.set_entities(entity_list=["Q42", "Q463035"], freq_list=[32, 111], vector_list=[vector1, vector2])
 | 
						|
> ```
 | 
						|
 | 
						|
| Name          | Type     | Description                       |
 | 
						|
| ------------- | -------- | --------------------------------- |
 | 
						|
| `entity_list` | iterable | List of unique entity identifiers |
 | 
						|
| `freq_list`   | iterable | List of entity frequencies        |
 | 
						|
| `vector_list` | iterable | List of entity vectors            |
 | 
						|
 | 
						|
## KnowledgeBase.add_alias {#add_alias tag="method"}
 | 
						|
 | 
						|
Add an alias or mention to the knowledge base, specifying its potential KB
 | 
						|
identifiers and their prior probabilities. The entity identifiers should refer
 | 
						|
to entities previously added with [`add_entity`](/api/kb#add_entity) or
 | 
						|
[`set_entities`](/api/kb#set_entities). The sum of the prior probabilities
 | 
						|
should not exceed 1.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> kb.add_alias(alias="Douglas", entities=["Q42", "Q463035"], probabilities=[0.6, 0.3])
 | 
						|
> ```
 | 
						|
 | 
						|
| Name            | Type     | Description                                        |
 | 
						|
| --------------- | -------- | -------------------------------------------------- |
 | 
						|
| `alias`         | str      | The textual mention or alias                       |
 | 
						|
| `entities`      | iterable | The potential entities that the alias may refer to |
 | 
						|
| `probabilities` | iterable | The prior probabilities of each entity             |
 | 
						|
 | 
						|
## KnowledgeBase.\_\_len\_\_ {#len tag="method"}
 | 
						|
 | 
						|
Get the total number of entities in the knowledge base.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> total_entities = len(kb)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type | Description                                   |
 | 
						|
| ----------- | ---- | --------------------------------------------- |
 | 
						|
| **RETURNS** | int  | The number of entities in the knowledge base. |
 | 
						|
 | 
						|
## KnowledgeBase.get_entity_strings {#get_entity_strings tag="method"}
 | 
						|
 | 
						|
Get a list of all entity IDs in the knowledge base.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> all_entities = kb.get_entity_strings()
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type | Description                                 |
 | 
						|
| ----------- | ---- | ------------------------------------------- |
 | 
						|
| **RETURNS** | list | The list of entities in the knowledge base. |
 | 
						|
 | 
						|
## KnowledgeBase.get_size_aliases {#get_size_aliases tag="method"}
 | 
						|
 | 
						|
Get the total number of aliases in the knowledge base.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> total_aliases = kb.get_size_aliases()
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type | Description                                  |
 | 
						|
| ----------- | ---- | -------------------------------------------- |
 | 
						|
| **RETURNS** | int  | The number of aliases in the knowledge base. |
 | 
						|
 | 
						|
## KnowledgeBase.get_alias_strings {#get_alias_strings tag="method"}
 | 
						|
 | 
						|
Get a list of all aliases in the knowledge base.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> all_aliases = kb.get_alias_strings()
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type | Description                                |
 | 
						|
| ----------- | ---- | ------------------------------------------ |
 | 
						|
| **RETURNS** | list | The list of aliases in the knowledge base. |
 | 
						|
 | 
						|
## KnowledgeBase.get_candidates {#get_candidates tag="method"}
 | 
						|
 | 
						|
Given a certain textual mention as input, retrieve a list of candidate entities
 | 
						|
of type [`Candidate`](/api/kb/#candidate_init).
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> candidates = kb.get_candidates("Douglas")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type     | Description                              |
 | 
						|
| ----------- | -------- | ---------------------------------------- |
 | 
						|
| `alias`     | str      | The textual mention or alias             |
 | 
						|
| **RETURNS** | iterable | The list of relevant `Candidate` objects |
 | 
						|
 | 
						|
## KnowledgeBase.get_vector {#get_vector tag="method"}
 | 
						|
 | 
						|
Given a certain entity ID, retrieve its pretrained entity vector.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> vector = kb.get_vector("Q42")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type   | Description       |
 | 
						|
| ----------- | ------ | ----------------- |
 | 
						|
| `entity`    | str    | The entity ID     |
 | 
						|
| **RETURNS** | vector | The entity vector |
 | 
						|
 | 
						|
## KnowledgeBase.get_prior_prob {#get_prior_prob tag="method"}
 | 
						|
 | 
						|
Given a certain entity ID and a certain textual mention, retrieve the prior
 | 
						|
probability of the fact that the mention links to the entity ID.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> probability = kb.get_prior_prob("Q42", "Douglas")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type  | Description                                                    |
 | 
						|
| ----------- | ----- | -------------------------------------------------------------- |
 | 
						|
| `entity`    | str   | The entity ID                                                  |
 | 
						|
| `alias`     | str   | The textual mention or alias                                   |
 | 
						|
| **RETURNS** | float | The prior probability of the `alias` referring to the `entity` |
 | 
						|
 | 
						|
## KnowledgeBase.dump {#dump tag="method"}
 | 
						|
 | 
						|
Save the current state of the knowledge base to a directory.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> kb.dump(loc)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name  | Type         | Description                                                                                                           |
 | 
						|
| ----- | ------------ | --------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `loc` | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
 | 
						|
 | 
						|
## KnowledgeBase.load_bulk {#load_bulk tag="method"}
 | 
						|
 | 
						|
Restore the state of the knowledge base from a given directory. Note that the
 | 
						|
[`Vocab`](/api/vocab) should also be the same as the one used to create the KB.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> from spacy.kb import KnowledgeBase
 | 
						|
> from spacy.vocab import Vocab
 | 
						|
> vocab = Vocab().from_disk("/path/to/vocab")
 | 
						|
> kb = KnowledgeBase(vocab=vocab, entity_vector_length=64)
 | 
						|
> kb.load_bulk("/path/to/kb")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type            | Description                                                                |
 | 
						|
| ----------- | --------------- | -------------------------------------------------------------------------- |
 | 
						|
| `loc`       | str / `Path`    | A path to a directory. Paths may be either strings or `Path`-like objects. |
 | 
						|
| **RETURNS** | `KnowledgeBase` | The modified `KnowledgeBase` object.                                       |
 | 
						|
 | 
						|
## Candidate.\_\_init\_\_ {#candidate_init tag="method"}
 | 
						|
 | 
						|
Construct a `Candidate` object. Usually this constructor is not called directly,
 | 
						|
but instead these objects are returned by the
 | 
						|
[`get_candidates`](/api/kb#get_candidates) method of a `KnowledgeBase`.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> from spacy.kb import Candidate
 | 
						|
> candidate = Candidate(kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name          | Type            | Description                                                    |
 | 
						|
| ------------- | --------------- | -------------------------------------------------------------- |
 | 
						|
| `kb`          | `KnowledgeBase` | The knowledge base that defined this candidate.                |
 | 
						|
| `entity_hash` | int             | The hash of the entity's KB ID.                                |
 | 
						|
| `entity_freq` | float           | The entity frequency as recorded in the KB.                    |
 | 
						|
| `alias_hash`  | int             | The hash of the textual mention or alias.                      |
 | 
						|
| `prior_prob`  | float           | The prior probability of the `alias` referring to the `entity` |
 | 
						|
 | 
						|
## Candidate attributes {#candidate_attributes}
 | 
						|
 | 
						|
| Name            | Type   | Description                                                    |
 | 
						|
| --------------- | ------ | -------------------------------------------------------------- |
 | 
						|
| `entity`        | int    | The entity's unique KB identifier                              |
 | 
						|
| `entity_`       | str    | The entity's unique KB identifier                              |
 | 
						|
| `alias`         | int    | The alias or textual mention                                   |
 | 
						|
| `alias_`        | str    | The alias or textual mention                                   |
 | 
						|
| `prior_prob`    | long   | The prior probability of the `alias` referring to the `entity` |
 | 
						|
| `entity_freq`   | long   | The frequency of the entity in a typical corpus                |
 | 
						|
| `entity_vector` | vector | The pretrained vector of the entity                            |
 |