mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			353 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			353 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: TextCategorizer
 | |
| tag: class
 | |
| source: spacy/pipeline/pipes.pyx
 | |
| new: 2
 | |
| ---
 | |
| 
 | |
| This class is a subclass of `Pipe` and follows the same API. The pipeline
 | |
| component is available in the [processing pipeline](/usage/processing-pipelines)
 | |
| via the ID `"textcat"`.
 | |
| 
 | |
| ## TextCategorizer.Model {#model tag="classmethod"}
 | |
| 
 | |
| Initialize a model for the pipe. The model should implement the
 | |
| `thinc.neural.Model` API. Wrappers are under development for most major machine
 | |
| learning libraries.
 | |
| 
 | |
| | Name        | Type   | Description                           |
 | |
| | ----------- | ------ | ------------------------------------- |
 | |
| | `**kwargs`  | -      | Parameters for initializing the model |
 | |
| | **RETURNS** | object | The initialized model.                |
 | |
| 
 | |
| ## TextCategorizer.\_\_init\_\_ {#init tag="method"}
 | |
| 
 | |
| Create a new pipeline instance. In your application, you would normally use a
 | |
| shortcut for this and instantiate the component using its string name and
 | |
| [`nlp.create_pipe`](/api/language#create_pipe).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > # Construction via create_pipe
 | |
| > textcat = nlp.create_pipe("textcat")
 | |
| > textcat = nlp.create_pipe("textcat", config={"exclusive_classes": True})
 | |
| >
 | |
| > # Construction from class
 | |
| > from spacy.pipeline import TextCategorizer
 | |
| > textcat = TextCategorizer(nlp.vocab)
 | |
| > textcat.from_disk("/path/to/model")
 | |
| > ```
 | |
| 
 | |
| | Name                | Type                          | Description                                                                                                                                           |
 | |
| | ------------------- | ----------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `vocab`             | `Vocab`                       | The shared vocabulary.                                                                                                                                |
 | |
| | `model`             | `thinc.neural.Model` / `True` | The model powering the pipeline component. If no model is supplied, the model is created when you call `begin_training`, `from_disk` or `from_bytes`. |
 | |
| | `exclusive_classes` | bool                          | Make categories mutually exclusive. Defaults to `False`.                                                                                              |
 | |
| | `architecture`      | str                           | Model architecture to use, see [architectures](#architectures) for details. Defaults to `"ensemble"`.                                                 |
 | |
| | **RETURNS**         | `TextCategorizer`             | The newly constructed object.                                                                                                                         |
 | |
| 
 | |
| ### Architectures {#architectures new="2.1"}
 | |
| 
 | |
| Text classification models can be used to solve a wide variety of problems.
 | |
| Differences in text length, number of labels, difficulty, and runtime
 | |
| performance constraints mean that no single algorithm performs well on all types
 | |
| of problems. To handle a wider variety of problems, the `TextCategorizer` object
 | |
| allows configuration of its model architecture, using the `architecture` keyword
 | |
| argument.
 | |
| 
 | |
| | Name           | Description                                                                                                                                                                                                                                                                                                                                                                                                      |
 | |
| | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `"ensemble"`   | **Default:** Stacked ensemble of a bag-of-words model and a neural network model. The neural network uses a CNN with mean pooling and attention. The "ngram_size" and "attr" arguments can be used to configure the feature extraction for the bag-of-words model.                                                                                                                                               |
 | |
| | `"simple_cnn"` | A neural network model where token vectors are calculated using a CNN. The vectors are mean pooled and used as features in a feed-forward network. This architecture is usually less accurate than the ensemble, but runs faster.                                                                                                                                                                                |
 | |
| | `"bow"`        | An ngram "bag-of-words" model. This architecture should run much faster than the others, but may not be as accurate, especially if texts are short. The features extracted can be controlled using the keyword arguments `ngram_size` and `attr`. For instance, `ngram_size=3` and `attr="lower"` would give lower-cased unigram, trigram and bigram features. 2, 3 or 4 are usually good choices of ngram size. |
 | |
| 
 | |
| ## TextCategorizer.\_\_call\_\_ {#call tag="method"}
 | |
| 
 | |
| Apply the pipe to one document. The document is modified in place, and returned.
 | |
| This usually happens under the hood when the `nlp` object is called on a text
 | |
| and all pipeline components are applied to the `Doc` in order. Both
 | |
| [`__call__`](/api/textcategorizer#call) and [`pipe`](/api/textcategorizer#pipe)
 | |
| delegate to the [`predict`](/api/textcategorizer#predict) and
 | |
| [`set_annotations`](/api/textcategorizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > textcat = TextCategorizer(nlp.vocab)
 | |
| > doc = nlp("This is a sentence.")
 | |
| > # This usually happens under the hood
 | |
| > processed = textcat(doc)
 | |
| > ```
 | |
| 
 | |
| | Name        | Type  | Description              |
 | |
| | ----------- | ----- | ------------------------ |
 | |
| | `doc`       | `Doc` | The document to process. |
 | |
| | **RETURNS** | `Doc` | The processed document.  |
 | |
| 
 | |
| ## TextCategorizer.pipe {#pipe tag="method"}
 | |
| 
 | |
| Apply the pipe to a stream of documents. This usually happens under the hood
 | |
| when the `nlp` object is called on a text and all pipeline components are
 | |
| applied to the `Doc` in order. Both [`__call__`](/api/textcategorizer#call) and
 | |
| [`pipe`](/api/textcategorizer#pipe) delegate to the
 | |
| [`predict`](/api/textcategorizer#predict) and
 | |
| [`set_annotations`](/api/textcategorizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > textcat = TextCategorizer(nlp.vocab)
 | |
| > for doc in textcat.pipe(docs, batch_size=50):
 | |
| >     pass
 | |
| > ```
 | |
| 
 | |
| | Name         | Type     | Description                                            |
 | |
| | ------------ | -------- | ------------------------------------------------------ |
 | |
| | `stream`     | iterable | A stream of documents.                                 |
 | |
| | `batch_size` | int      | The number of texts to buffer. Defaults to `128`.      |
 | |
| | **YIELDS**   | `Doc`    | Processed documents in the order of the original text. |
 | |
| 
 | |
| ## TextCategorizer.predict {#predict tag="method"}
 | |
| 
 | |
| Apply the pipeline's model to a batch of docs, without modifying them.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > textcat = TextCategorizer(nlp.vocab)
 | |
| > scores, tensors = textcat.predict([doc1, doc2])
 | |
| > ```
 | |
| 
 | |
| | Name        | Type     | Description                                                                                                                                                                                                                        |
 | |
| | ----------- | -------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `docs`      | iterable | The documents to predict.                                                                                                                                                                                                          |
 | |
| | **RETURNS** | tuple    | A `(scores, tensors)` tuple where `scores` is the model's prediction for each document and `tensors` is the token representations used to predict the scores. Each tensor is an array with one row for each token in the document. |
 | |
| 
 | |
| ## TextCategorizer.set_annotations {#set_annotations tag="method"}
 | |
| 
 | |
| Modify a batch of documents, using pre-computed scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > textcat = TextCategorizer(nlp.vocab)
 | |
| > scores, tensors = textcat.predict([doc1, doc2])
 | |
| > textcat.set_annotations([doc1, doc2], scores, tensors)
 | |
| > ```
 | |
| 
 | |
| | Name      | Type     | Description                                               |
 | |
| | --------- | -------- | --------------------------------------------------------- |
 | |
| | `docs`    | iterable | The documents to modify.                                  |
 | |
| | `scores`  | -        | The scores to set, produced by `TextCategorizer.predict`. |
 | |
| | `tensors` | iterable | The token representations used to predict the scores.     |
 | |
| 
 | |
| ## TextCategorizer.update {#update tag="method"}
 | |
| 
 | |
| Learn from a batch of documents and gold-standard information, updating the
 | |
| pipe's model. Delegates to [`predict`](/api/textcategorizer#predict) and
 | |
| [`get_loss`](/api/textcategorizer#get_loss).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > textcat = TextCategorizer(nlp.vocab)
 | |
| > losses = {}
 | |
| > optimizer = nlp.begin_training()
 | |
| > textcat.update([doc1, doc2], [gold1, gold2], losses=losses, sgd=optimizer)
 | |
| > ```
 | |
| 
 | |
| | Name     | Type     | Description                                                                                  |
 | |
| | -------- | -------- | -------------------------------------------------------------------------------------------- |
 | |
| | `docs`   | iterable | A batch of documents to learn from.                                                          |
 | |
| | `golds`  | iterable | The gold-standard data. Must have the same length as `docs`.                                 |
 | |
| | `drop`   | float    | The dropout rate.                                                                            |
 | |
| | `sgd`    | callable | The optimizer. Should take two arguments `weights` and `gradient`, and an optional ID.       |
 | |
| | `losses` | dict     | Optional record of the loss during training. The value keyed by the model's name is updated. |
 | |
| 
 | |
| ## TextCategorizer.get_loss {#get_loss tag="method"}
 | |
| 
 | |
| Find the loss and gradient of loss for the batch of documents and their
 | |
| predicted scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > textcat = TextCategorizer(nlp.vocab)
 | |
| > scores = textcat.predict([doc1, doc2])
 | |
| > loss, d_loss = textcat.get_loss([doc1, doc2], [gold1, gold2], scores)
 | |
| > ```
 | |
| 
 | |
| | Name        | Type     | Description                                                  |
 | |
| | ----------- | -------- | ------------------------------------------------------------ |
 | |
| | `docs`      | iterable | The batch of documents.                                      |
 | |
| | `golds`     | iterable | The gold-standard data. Must have the same length as `docs`. |
 | |
| | `scores`    | -        | Scores representing the model's predictions.                 |
 | |
| | **RETURNS** | tuple    | The loss and the gradient, i.e. `(loss, gradient)`.          |
 | |
| 
 | |
| ## TextCategorizer.begin_training {#begin_training tag="method"}
 | |
| 
 | |
| Initialize the pipe for training, using data examples if available. If no model
 | |
| has been initialized yet, the model is added.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > textcat = TextCategorizer(nlp.vocab)
 | |
| > nlp.pipeline.append(textcat)
 | |
| > optimizer = textcat.begin_training(pipeline=nlp.pipeline)
 | |
| > ```
 | |
| 
 | |
| | Name          | Type     | Description                                                                                                                                                                               |
 | |
| | ------------- | -------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `gold_tuples` | iterable | Optional gold-standard annotations from which to construct [`GoldParse`](/api/goldparse) objects.                                                                                         |
 | |
| | `pipeline`    | list     | Optional list of pipeline components that this component is part of.                                                                                                                      |
 | |
| | `sgd`         | callable | An optional optimizer. Should take two arguments `weights` and `gradient`, and an optional ID. Will be created via [`TextCategorizer`](/api/textcategorizer#create_optimizer) if not set. |
 | |
| | **RETURNS**   | callable | An optimizer.                                                                                                                                                                             |
 | |
| 
 | |
| ## TextCategorizer.create_optimizer {#create_optimizer tag="method"}
 | |
| 
 | |
| Create an optimizer for the pipeline component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > textcat = TextCategorizer(nlp.vocab)
 | |
| > optimizer = textcat.create_optimizer()
 | |
| > ```
 | |
| 
 | |
| | Name        | Type     | Description    |
 | |
| | ----------- | -------- | -------------- |
 | |
| | **RETURNS** | callable | The optimizer. |
 | |
| 
 | |
| ## TextCategorizer.use_params {#use_params tag="method, contextmanager"}
 | |
| 
 | |
| Modify the pipe's model, to use the given parameter values.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > textcat = TextCategorizer(nlp.vocab)
 | |
| > with textcat.use_params(optimizer.averages):
 | |
| >     textcat.to_disk("/best_model")
 | |
| > ```
 | |
| 
 | |
| | Name     | Type | Description                                                                                                |
 | |
| | -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
 | |
| | `params` | dict | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
 | |
| 
 | |
| ## TextCategorizer.add_label {#add_label tag="method"}
 | |
| 
 | |
| Add a new label to the pipe.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > textcat = TextCategorizer(nlp.vocab)
 | |
| > textcat.add_label("MY_LABEL")
 | |
| > ```
 | |
| 
 | |
| | Name    | Type | Description       |
 | |
| | ------- | ---- | ----------------- |
 | |
| | `label` | str  | The label to add. |
 | |
| 
 | |
| ## TextCategorizer.to_disk {#to_disk tag="method"}
 | |
| 
 | |
| Serialize the pipe to disk.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > textcat = TextCategorizer(nlp.vocab)
 | |
| > textcat.to_disk("/path/to/textcat")
 | |
| > ```
 | |
| 
 | |
| | Name      | Type         | Description                                                                                                           |
 | |
| | --------- | ------------ | --------------------------------------------------------------------------------------------------------------------- |
 | |
| | `path`    | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
 | |
| | `exclude` | list         | String names of [serialization fields](#serialization-fields) to exclude.                                             |
 | |
| 
 | |
| ## TextCategorizer.from_disk {#from_disk tag="method"}
 | |
| 
 | |
| Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > textcat = TextCategorizer(nlp.vocab)
 | |
| > textcat.from_disk("/path/to/textcat")
 | |
| > ```
 | |
| 
 | |
| | Name        | Type              | Description                                                                |
 | |
| | ----------- | ----------------- | -------------------------------------------------------------------------- |
 | |
| | `path`      | str / `Path`      | A path to a directory. Paths may be either strings or `Path`-like objects. |
 | |
| | `exclude`   | list              | String names of [serialization fields](#serialization-fields) to exclude.  |
 | |
| | **RETURNS** | `TextCategorizer` | The modified `TextCategorizer` object.                                     |
 | |
| 
 | |
| ## TextCategorizer.to_bytes {#to_bytes tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > textcat = TextCategorizer(nlp.vocab)
 | |
| > textcat_bytes = textcat.to_bytes()
 | |
| > ```
 | |
| 
 | |
| Serialize the pipe to a bytestring.
 | |
| 
 | |
| | Name        | Type  | Description                                                               |
 | |
| | ----------- | ----- | ------------------------------------------------------------------------- |
 | |
| | `exclude`   | list  | String names of [serialization fields](#serialization-fields) to exclude. |
 | |
| | **RETURNS** | bytes | The serialized form of the `TextCategorizer` object.                      |
 | |
| 
 | |
| ## TextCategorizer.from_bytes {#from_bytes tag="method"}
 | |
| 
 | |
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > textcat_bytes = textcat.to_bytes()
 | |
| > textcat = TextCategorizer(nlp.vocab)
 | |
| > textcat.from_bytes(textcat_bytes)
 | |
| > ```
 | |
| 
 | |
| | Name         | Type              | Description                                                               |
 | |
| | ------------ | ----------------- | ------------------------------------------------------------------------- |
 | |
| | `bytes_data` | bytes             | The data to load from.                                                    |
 | |
| | `exclude`    | list              | String names of [serialization fields](#serialization-fields) to exclude. |
 | |
| | **RETURNS**  | `TextCategorizer` | The `TextCategorizer` object.                                             |
 | |
| 
 | |
| ## TextCategorizer.labels {#labels tag="property"}
 | |
| 
 | |
| The labels currently added to the component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > textcat.add_label("MY_LABEL")
 | |
| > assert "MY_LABEL" in textcat.labels
 | |
| > ```
 | |
| 
 | |
| | Name        | Type  | Description                        |
 | |
| | ----------- | ----- | ---------------------------------- |
 | |
| | **RETURNS** | tuple | The labels added to the component. |
 | |
| 
 | |
| ## Serialization fields {#serialization-fields}
 | |
| 
 | |
| During serialization, spaCy will export several data fields used to restore
 | |
| different aspects of the object. If needed, you can exclude them from
 | |
| serialization by passing in the string names via the `exclude` argument.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > data = textcat.to_disk("/path", exclude=["vocab"])
 | |
| > ```
 | |
| 
 | |
| | Name    | Description                                                    |
 | |
| | ------- | -------------------------------------------------------------- |
 | |
| | `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | |
| | `cfg`   | The config file. You usually don't want to exclude this.       |
 | |
| | `model` | The binary model data. You usually don't want to exclude this. |
 |