mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-13 13:17:06 +03:00
546 lines
30 KiB
Markdown
546 lines
30 KiB
Markdown
---
|
||
title: Transformer
|
||
teaser: Pipeline component for multi-task learning with transformer models
|
||
tag: class
|
||
source: github.com/explosion/spacy-transformers/blob/master/spacy_transformers/pipeline_component.py
|
||
new: 3
|
||
api_base_class: /api/pipe
|
||
api_string_name: transformer
|
||
---
|
||
|
||
> #### Installation
|
||
>
|
||
> ```bash
|
||
> $ pip install spacy-transformers
|
||
> ```
|
||
|
||
<Infobox title="Important note" variant="warning">
|
||
|
||
This component is available via the extension package
|
||
[`spacy-transformers`](https://github.com/explosion/spacy-transformers). It
|
||
exposes the component via entry points, so if you have the package installed,
|
||
using `factory = "transformer"` in your
|
||
[training config](/usage/training#config) or `nlp.add_pipe("transformer")` will
|
||
work out-of-the-box.
|
||
|
||
</Infobox>
|
||
|
||
This pipeline component lets you use transformer models in your pipeline.
|
||
Supports all models that are available via the
|
||
[HuggingFace `transformers`](https://huggingface.co/transformers) library.
|
||
Usually you will connect subsequent components to the shared transformer using
|
||
the [TransformerListener](/api/architectures#TransformerListener) layer. This
|
||
works similarly to spaCy's [Tok2Vec](/api/tok2vec) component and
|
||
[Tok2VecListener](/api/architectures/Tok2VecListener) sublayer.
|
||
|
||
The component assigns the output of the transformer to the `Doc`'s extension
|
||
attributes. We also calculate an alignment between the word-piece tokens and the
|
||
spaCy tokenization, so that we can use the last hidden states to set the
|
||
`Doc.tensor` attribute. When multiple word-piece tokens align to the same spaCy
|
||
token, the spaCy token receives the sum of their values. To access the values,
|
||
you can use the custom [`Doc._.trf_data`](#custom-attributes) attribute. The
|
||
package also adds the function registries [`@span_getters`](#span_getters) and
|
||
[`@annotation_setters`](#annotation_setters) with several built-in registered
|
||
functions. For more details, see the [usage documentation](/usage/transformers).
|
||
|
||
## Config and implementation {#config}
|
||
|
||
The default config is defined by the pipeline component factory and describes
|
||
how the component should be configured. You can override its settings via the
|
||
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
||
[`config.cfg` for training](/usage/training#config). See the
|
||
[model architectures](/api/architectures) documentation for details on the
|
||
architectures and their arguments and hyperparameters.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy_transformers import Transformer, DEFAULT_CONFIG
|
||
>
|
||
> nlp.add_pipe("transformer", config=DEFAULT_CONFIG)
|
||
> ```
|
||
|
||
| Setting | Type | Description | Default |
|
||
| ------------------- | ------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------- |
|
||
| `max_batch_items` | int | Maximum size of a padded batch. | `4096` |
|
||
| `annotation_setter` | Callable | Function that takes a batch of `Doc` objects and a [`FullTransformerBatch`](/api/transformer#fulltransformerbatch) and can set additional annotations on the `Doc`. The `Doc._.transformer_data` attribute is set prior to calling the callback. By default, no additional annotations are set. | `null_annotation_setter` |
|
||
| `model` | [`Model`](https://thinc.ai/docs/api-model) | **Input:** `List[Doc]`. **Output:** [`FullTransformerBatch`](/api/transformer#fulltransformerbatch). The Thinc [`Model`](https://thinc.ai/docs/api-model) wrapping the transformer. | [TransformerModel](/api/architectures#TransformerModel) |
|
||
|
||
```python
|
||
https://github.com/explosion/spacy-transformers/blob/master/spacy_transformers/pipeline_component.py
|
||
```
|
||
|
||
## Transformer.\_\_init\_\_ {#init tag="method"}
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> # Construction via add_pipe with default model
|
||
> trf = nlp.add_pipe("transformer")
|
||
>
|
||
> # Construction via add_pipe with custom config
|
||
> config = {
|
||
> "model": {
|
||
> "@architectures": "spacy-transformers.TransformerModel.v1",
|
||
> "name": "bert-base-uncased",
|
||
> "tokenizer_config": {"use_fast": True}
|
||
> }
|
||
> }
|
||
> trf = nlp.add_pipe("transformer", config=config)
|
||
>
|
||
> # Construction from class
|
||
> from spacy_transformers import Transformer
|
||
> trf = Transformer(nlp.vocab, model)
|
||
> ```
|
||
|
||
Construct a `Transformer` component. One or more subsequent spaCy components can
|
||
use the transformer outputs as features in its model, with gradients
|
||
backpropagated to the single shared weights. The activations from the
|
||
transformer are saved in the [`Doc._.trf_data`](#custom-attributes) extension
|
||
attribute. You can also provide a callback to set additional annotations. In
|
||
your application, you would normally use a shortcut for this and instantiate the
|
||
component using its string name and [`nlp.add_pipe`](/api/language#create_pipe).
|
||
|
||
| Name | Type | Description |
|
||
| ------------------- | ------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `vocab` | `Vocab` | The shared vocabulary. |
|
||
| `model` | [`Model`](https://thinc.ai/docs/api-model) | **Input:** `List[Doc]`. **Output:** [`FullTransformerBatch`](/api/transformer#fulltransformerbatch). The Thinc [`Model`](https://thinc.ai/docs/api-model) wrapping the transformer. Usually you will want to use the [TransformerModel](/api/architectures#TransformerModel) layer for this. |
|
||
| `annotation_setter` | `Callable` | Function that takes a batch of `Doc` objects and a [`FullTransformerBatch`](/api/transformer#fulltransformerbatch) and can set additional annotations on the `Doc`. The `Doc._.transformer_data` attribute is set prior to calling the callback. By default, no additional annotations are set. |
|
||
| _keyword-only_ | | |
|
||
| `name` | str | String name of the component instance. Used to add entries to the `losses` during training. |
|
||
| `max_batch_items` | int | Maximum size of a padded batch. Defaults to `128*32`. |
|
||
|
||
## Transformer.\_\_call\_\_ {#call tag="method"}
|
||
|
||
Apply the pipe to one document. The document is modified in place, and returned.
|
||
This usually happens under the hood when the `nlp` object is called on a text
|
||
and all pipeline components are applied to the `Doc` in order. Both
|
||
[`__call__`](/api/transformer#call) and [`pipe`](/api/transformer#pipe) delegate
|
||
to the [`predict`](/api/transformer#predict) and
|
||
[`set_annotations`](/api/transformer#set_annotations) methods.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("This is a sentence.")
|
||
> trf = nlp.add_pipe("transformer")
|
||
> # This usually happens under the hood
|
||
> processed = transformer(doc)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ----- | ------------------------ |
|
||
| `doc` | `Doc` | The document to process. |
|
||
| **RETURNS** | `Doc` | The processed document. |
|
||
|
||
## Transformer.pipe {#pipe tag="method"}
|
||
|
||
Apply the pipe to a stream of documents. This usually happens under the hood
|
||
when the `nlp` object is called on a text and all pipeline components are
|
||
applied to the `Doc` in order. Both [`__call__`](/api/transformer#call) and
|
||
[`pipe`](/api/transformer#pipe) delegate to the
|
||
[`predict`](/api/transformer#predict) and
|
||
[`set_annotations`](/api/transformer#set_annotations) methods.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> trf = nlp.add_pipe("transformer")
|
||
> for doc in trf.pipe(docs, batch_size=50):
|
||
> pass
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------- | ----------------------------------------------------- |
|
||
| `stream` | `Iterable[Doc]` | A stream of documents. |
|
||
| _keyword-only_ | | |
|
||
| `batch_size` | int | The number of documents to buffer. Defaults to `128`. |
|
||
| **YIELDS** | `Doc` | The processed documents in order. |
|
||
|
||
## Transformer.begin_training {#begin_training tag="method"}
|
||
|
||
Initialize the component for training and return an
|
||
[`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a
|
||
function that returns an iterable of [`Example`](/api/example) objects. The data
|
||
examples are used to **initialize the model** of the component and can either be
|
||
the full training data or a representative sample. Initialization includes
|
||
validating the network,
|
||
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
|
||
setting up the label scheme based on the data.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> trf = nlp.add_pipe("transformer")
|
||
> optimizer = trf.begin_training(lambda: [], pipeline=nlp.pipeline)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------------------------------------------- | -------------------------------------------------------------------------------------------------------------- |
|
||
| `get_examples` | `Callable[[], Iterable[Example]]` | Optional function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. |
|
||
| _keyword-only_ | | |
|
||
| `pipeline` | `List[Tuple[str, Callable]]` | Optional list of pipeline components that this component is part of. |
|
||
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | An optional optimizer. Will be created via [`create_optimizer`](/api/transformer#create_optimizer) if not set. |
|
||
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
||
|
||
## Transformer.predict {#predict tag="method"}
|
||
|
||
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||
modifying them.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> trf = nlp.add_pipe("transformer")
|
||
> scores = trf.predict([doc1, doc2])
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | --------------- | ----------------------------------------- |
|
||
| `docs` | `Iterable[Doc]` | The documents to predict. |
|
||
| **RETURNS** | - | The model's prediction for each document. |
|
||
|
||
## Transformer.set_annotations {#set_annotations tag="method"}
|
||
|
||
Assign the extracted features to the Doc objects. By default, the
|
||
[`TransformerData`](/api/transformer#transformerdata) object is written to the
|
||
[`Doc._.trf_data`](#custom-attributes) attribute. Your annotation_setter
|
||
callback is then called, if provided.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> trf = nlp.add_pipe("transformer")
|
||
> scores = trf.predict(docs)
|
||
> trf.set_annotations(docs, scores)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------- | --------------- | ----------------------------------------------------- |
|
||
| `docs` | `Iterable[Doc]` | The documents to modify. |
|
||
| `scores` | - | The scores to set, produced by `Transformer.predict`. |
|
||
|
||
## Transformer.update {#update tag="method"}
|
||
|
||
Prepare for an update to the transformer. Like the [`Tok2Vec`](/api/tok2vec)
|
||
component, the `Transformer` component is unusual in that it does not receive
|
||
"gold standard" annotations to calculate a weight update. The optimal output of
|
||
the transformer data is unknown – it's a hidden layer inside the network that is
|
||
updated by backpropagating from output layers.
|
||
|
||
The `Transformer` component therefore does **not** perform a weight update
|
||
during its own `update` method. Instead, it runs its transformer model and
|
||
communicates the output and the backpropagation callback to any **downstream
|
||
components** that have been connected to it via the
|
||
[TransformerListener](/api/architectures#TransformerListener) sublayer. If there
|
||
are multiple listeners, the last layer will actually backprop to the transformer
|
||
and call the optimizer, while the others simply increment the gradients.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> trf = nlp.add_pipe("transformer")
|
||
> optimizer = nlp.begin_training()
|
||
> losses = trf.update(examples, sgd=optimizer)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------------- | --------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `examples` | `Iterable[Example]` | A batch of [`Example`](/api/example) objects. Only the [`Example.predicted`](/api/example#predicted) `Doc` object is used, the reference `Doc` is ignored. |
|
||
| _keyword-only_ | | |
|
||
| `drop` | float | The dropout rate. |
|
||
| `set_annotations` | bool | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/transformer#set_annotations). |
|
||
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
||
| `losses` | `Dict[str, float]` | Optional record of the loss during training. Updated using the component name as the key. |
|
||
| **RETURNS** | `Dict[str, float]` | The updated `losses` dictionary. |
|
||
|
||
## Transformer.create_optimizer {#create_optimizer tag="method"}
|
||
|
||
Create an optimizer for the pipeline component.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> trf = nlp.add_pipe("transformer")
|
||
> optimizer = trf.create_optimizer()
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | --------------------------------------------------- | -------------- |
|
||
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
||
|
||
## Transformer.use_params {#use_params tag="method, contextmanager"}
|
||
|
||
Modify the pipe's model, to use the given parameter values. At the end of the
|
||
context, the original parameters are restored.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> trf = nlp.add_pipe("transformer")
|
||
> with trf.use_params(optimizer.averages):
|
||
> trf.to_disk("/best_model")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------- | ---- | ----------------------------------------- |
|
||
| `params` | dict | The parameter values to use in the model. |
|
||
|
||
## Transformer.to_disk {#to_disk tag="method"}
|
||
|
||
Serialize the pipe to disk.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> trf = nlp.add_pipe("transformer")
|
||
> trf.to_disk("/path/to/transformer")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------- | --------------------------------------------------------------------------------------------------------------------- |
|
||
| `path` | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
||
| _keyword-only_ | | |
|
||
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
||
|
||
## Transformer.from_disk {#from_disk tag="method"}
|
||
|
||
Load the pipe from disk. Modifies the object in place and returns it.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> trf = nlp.add_pipe("transformer")
|
||
> trf.from_disk("/path/to/transformer")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------- | -------------------------------------------------------------------------- |
|
||
| `path` | str / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
|
||
| _keyword-only_ | | |
|
||
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
||
| **RETURNS** | `Tok2Vec` | The modified `Tok2Vec` object. |
|
||
|
||
## Transformer.to_bytes {#to_bytes tag="method"}
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> trf = nlp.add_pipe("transformer")
|
||
> trf_bytes = trf.to_bytes()
|
||
> ```
|
||
|
||
Serialize the pipe to a bytestring.
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------- | ------------------------------------------------------------------------- |
|
||
| _keyword-only_ | | |
|
||
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
||
| **RETURNS** | bytes | The serialized form of the `Tok2Vec` object. |
|
||
|
||
## Transformer.from_bytes {#from_bytes tag="method"}
|
||
|
||
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> trf_bytes = trf.to_bytes()
|
||
> trf = nlp.add_pipe("transformer")
|
||
> trf.from_bytes(trf_bytes)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------- | ------------------------------------------------------------------------- |
|
||
| `bytes_data` | bytes | The data to load from. |
|
||
| _keyword-only_ | | |
|
||
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
||
| **RETURNS** | `Tok2Vec` | The `Tok2Vec` object. |
|
||
|
||
## Serialization fields {#serialization-fields}
|
||
|
||
During serialization, spaCy will export several data fields used to restore
|
||
different aspects of the object. If needed, you can exclude them from
|
||
serialization by passing in the string names via the `exclude` argument.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> data = trf.to_disk("/path", exclude=["vocab"])
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------- | -------------------------------------------------------------- |
|
||
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||
| `cfg` | The config file. You usually don't want to exclude this. |
|
||
| `model` | The binary model data. You usually don't want to exclude this. |
|
||
|
||
## TransformerData {#transformerdata tag="dataclass"}
|
||
|
||
Transformer tokens and outputs for one `Doc` object.
|
||
|
||
<!-- TODO: finish API docs, also mention "width" is property -->
|
||
|
||
| Name | Type | Description |
|
||
| --------- | -------------------------------------------------- | ----------- |
|
||
| `tokens` | `Dict` | |
|
||
| `tensors` | `List[FloatsXd]` | |
|
||
| `align` | [`Ragged`](https://thinc.ai/docs/api-types#ragged) | |
|
||
| `width` | int | |
|
||
|
||
### TransformerData.empty {#transformerdata-emoty tag="classmethod"}
|
||
|
||
<!-- TODO: finish API docs -->
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ----------------- | ----------- |
|
||
| **RETURNS** | `TransformerData` | |
|
||
|
||
## FullTransformerBatch {#fulltransformerbatch tag="dataclass"}
|
||
|
||
<!-- TODO: write, also mention doc_data is property -->
|
||
|
||
| Name | Type | Description |
|
||
| ---------- | -------------------------------------------------------------------------------------------------------------------------- | ----------- |
|
||
| `spans` | `List[List[Span]]` | |
|
||
| `tokens` | [`transformers.BatchEncoding`](https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.BatchEncoding) | |
|
||
| `tensors` | `List[torch.Tensor]` | |
|
||
| `align` | [`Ragged`](https://thinc.ai/docs/api-types#ragged) | |
|
||
| `doc_data` | `List[TransformerData]` | |
|
||
|
||
### FullTransformerBatch.unsplit_by_doc {#fulltransformerbatch-unsplit_by_doc tag="method"}
|
||
|
||
<!-- TODO: write -->
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---------------------- | ----------- |
|
||
| `arrays` | `List[List[Floats3d]]` | |
|
||
| **RETURNS** | `FullTransformerBatch` | |
|
||
|
||
### FullTransformerBatch.split_by_doc {#fulltransformerbatch-split_by_doc tag="method"}
|
||
|
||
Split a `TransformerData` object that represents a batch into a list with one
|
||
`TransformerData` per `Doc`.
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ----------------------- | ----------- |
|
||
| **RETURNS** | `List[TransformerData]` | |
|
||
|
||
## Span getters {#span_getters source="github.com/explosion/spacy-transformers/blob/master/spacy_transformers/span_getters.py"}
|
||
|
||
Span getters are functions that take a batch of [`Doc`](/api/doc) objects and
|
||
return a lists of [`Span`](/api/span) objects for each doc, to be processed by
|
||
the transformer. This is used to manage long documents, by cutting them into
|
||
smaller sequences before running the transformer. The spans are allowed to
|
||
overlap, and you can also omit sections of the Doc if they are not relevant.
|
||
|
||
Span getters can be referenced in the `[components.transformer.model.get_spans]`
|
||
block of the config to customize the sequences processed by the transformer. You
|
||
can also register custom span getters using the `@spacy.registry.span_getters`
|
||
decorator.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> @spacy.registry.span_getters("sent_spans.v1")
|
||
> def configure_get_sent_spans() -> Callable:
|
||
> def get_sent_spans(docs: Iterable[Doc]) -> List[List[Span]]:
|
||
> return [list(doc.sents) for doc in docs]
|
||
>
|
||
> return get_sent_spans
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ------------------ | ---------------------------------------- |
|
||
| `docs` | `Iterable[Doc]` | A batch of `Doc` objects. |
|
||
| **RETURNS** | `List[List[Span]]` | The spans to process by the transformer. |
|
||
|
||
### doc_spans.v1 {#doc_spans tag="registered function"}
|
||
|
||
> #### Example config
|
||
>
|
||
> ```ini
|
||
> [transformer.model.get_spans]
|
||
> @span_getters = "doc_spans.v1"
|
||
> ```
|
||
|
||
Create a span getter that uses the whole document as its spans. This is the best
|
||
approach if your [`Doc`](/api/doc) objects already refer to relatively short
|
||
texts.
|
||
|
||
### sent_spans.v1 {#sent_spans tag="registered function"}
|
||
|
||
> #### Example config
|
||
>
|
||
> ```ini
|
||
> [transformer.model.get_spans]
|
||
> @span_getters = "sent_spans.v1"
|
||
> ```
|
||
|
||
Create a span getter that uses sentence boundary markers to extract the spans.
|
||
This requires sentence boundaries to be set (e.g. by the
|
||
[`Sentencizer`](/api/sentencizer)), and may result in somewhat uneven batches,
|
||
depending on the sentence lengths. However, it does provide the transformer with
|
||
more meaningful windows to attend over.
|
||
|
||
### strided_spans.v1 {#strided_spans tag="registered function"}
|
||
|
||
> #### Example config
|
||
>
|
||
> ```ini
|
||
> [transformer.model.get_spans]
|
||
> @span_getters = "strided_spans.v1"
|
||
> window = 128
|
||
> stride = 96
|
||
> ```
|
||
|
||
Create a span getter for strided spans. If you set the `window` and `stride` to
|
||
the same value, the spans will cover each token once. Setting `stride` lower
|
||
than `window` will allow for an overlap, so that some tokens are counted twice.
|
||
This can be desirable, because it allows all tokens to have both a left and
|
||
right context.
|
||
|
||
| Name | Type | Description |
|
||
| --------- | ---- | ---------------- |
|
||
| `window` | int | The window size. |
|
||
| `stride` | int | The stride size. |
|
||
|
||
## Annotation setters {#annotation_setters tag="registered functions" source="github.com/explosion/spacy-transformers/blob/master/spacy_transformers/annotation_setters.py"}
|
||
|
||
Annotation setters are functions that that take a batch of `Doc` objects and a
|
||
[`FullTransformerBatch`](/api/transformer#fulltransformerbatch) and can set
|
||
additional annotations on the `Doc`, e.g. to set custom or built-in attributes.
|
||
You can register custom annotation setters using the
|
||
`@registry.annotation_setters` decorator.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> @registry.annotation_setters("spacy-transformer.null_annotation_setter.v1")
|
||
> def configure_null_annotation_setter() -> Callable:
|
||
> def setter(docs: List[Doc], trf_data: FullTransformerBatch) -> None:
|
||
> pass
|
||
>
|
||
> return setter
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ---------- | ---------------------- | ------------------------------------ |
|
||
| `docs` | `List[Doc]` | A batch of `Doc` objects. |
|
||
| `trf_data` | `FullTransformerBatch` | The transformers data for the batch. |
|
||
|
||
The following built-in functions are available:
|
||
|
||
| Name | Description |
|
||
| --------------------------------------------- | ------------------------------------- |
|
||
| `spacy-transformer.null_annotation_setter.v1` | Don't set any additional annotations. |
|
||
|
||
## Custom attributes {#custom-attributes}
|
||
|
||
The component sets the following
|
||
[custom extension attributes](/usage/processing-pipeline#custom-components-attributes):
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | ----------------------------------------------------- | ---------------------------------------------------- |
|
||
| `Doc.trf_data` | [`TransformerData`](/api/transformer#transformerdata) | Transformer tokens and outputs for the `Doc` object. |
|