mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-14 21:57:15 +03:00
654 lines
35 KiB
Markdown
654 lines
35 KiB
Markdown
---
|
||
title: Doc
|
||
tag: class
|
||
teaser: A container for accessing linguistic annotations.
|
||
source: spacy/tokens/doc.pyx
|
||
---
|
||
|
||
A `Doc` is a sequence of [`Token`](/api/token) objects. Access sentences and
|
||
named entities, export annotations to numpy arrays, losslessly serialize to
|
||
compressed binary strings. The `Doc` object holds an array of
|
||
[`TokenC`](/api/cython-structs#tokenc) structs. The Python-level `Token` and
|
||
[`Span`](/api/span) objects are views of this array, i.e. they don't own the
|
||
data themselves.
|
||
|
||
## Doc.\_\_init\_\_ {#init tag="method"}
|
||
|
||
Construct a `Doc` object. The most common way to get a `Doc` object is via the
|
||
`nlp` object.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> # Construction 1
|
||
> doc = nlp("Some text")
|
||
>
|
||
> # Construction 2
|
||
> from spacy.tokens import Doc
|
||
> words = ["hello", "world", "!"]
|
||
> spaces = [True, False, False]
|
||
> doc = Doc(nlp.vocab, words=words, spaces=spaces)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `vocab` | A storage container for lexical types. ~~Vocab~~ |
|
||
| `words` | A list of strings to add to the container. ~~Optional[List[str]]~~ |
|
||
| `spaces` | A list of boolean values indicating whether each word has a subsequent space. Must have the same length as `words`, if specified. Defaults to a sequence of `True`. ~~Optional[List[bool]]~~ |
|
||
|
||
## Doc.\_\_getitem\_\_ {#getitem tag="method"}
|
||
|
||
Get a [`Token`](/api/token) object at position `i`, where `i` is an integer.
|
||
Negative indexing is supported, and follows the usual Python semantics, i.e.
|
||
`doc[-2]` is `doc[len(doc) - 2]`.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("Give it back! He pleaded.")
|
||
> assert doc[0].text == "Give"
|
||
> assert doc[-1].text == "."
|
||
> span = doc[1:3]
|
||
> assert span.text == "it back"
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | -------------------------------- |
|
||
| `i` | The index of the token. ~~int~~ |
|
||
| **RETURNS** | The token at `doc[i]`. ~~Token~~ |
|
||
|
||
Get a [`Span`](/api/span) object, starting at position `start` (token index) and
|
||
ending at position `end` (token index). For instance, `doc[2:5]` produces a span
|
||
consisting of tokens 2, 3 and 4. Stepped slices (e.g. `doc[start : end : step]`)
|
||
are not supported, as `Span` objects must be contiguous (cannot have gaps). You
|
||
can use negative indices and open-ended ranges, which have their normal Python
|
||
semantics.
|
||
|
||
| Name | Description |
|
||
| ----------- | ----------------------------------------------------- |
|
||
| `start_end` | The slice of the document to get. ~~Tuple[int, int]~~ |
|
||
| **RETURNS** | The span at `doc[start:end]`. ~~Span~~ |
|
||
|
||
## Doc.\_\_iter\_\_ {#iter tag="method"}
|
||
|
||
Iterate over `Token` objects, from which the annotations can be easily accessed.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("Give it back")
|
||
> assert [t.text for t in doc] == ["Give", "it", "back"]
|
||
> ```
|
||
|
||
This is the main way of accessing [`Token`](/api/token) objects, which are the
|
||
main way annotations are accessed from Python. If faster-than-Python speeds are
|
||
required, you can instead access the annotations as a numpy array, or access the
|
||
underlying C data directly from Cython.
|
||
|
||
| Name | Description |
|
||
| ---------- | --------------------------- |
|
||
| **YIELDS** | A `Token` object. ~~Token~~ |
|
||
|
||
## Doc.\_\_len\_\_ {#len tag="method"}
|
||
|
||
Get the number of tokens in the document.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("Give it back! He pleaded.")
|
||
> assert len(doc) == 7
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | --------------------------------------------- |
|
||
| **RETURNS** | The number of tokens in the document. ~~int~~ |
|
||
|
||
## Doc.set_extension {#set_extension tag="classmethod" new="2"}
|
||
|
||
Define a custom attribute on the `Doc` which becomes available via `Doc._`. For
|
||
details, see the documentation on
|
||
[custom attributes](/usage/processing-pipelines#custom-components-attributes).
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.tokens import Doc
|
||
> city_getter = lambda doc: any(city in doc.text for city in ("New York", "Paris", "Berlin"))
|
||
> Doc.set_extension("has_city", getter=city_getter)
|
||
> doc = nlp("I like New York")
|
||
> assert doc._.has_city
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| --------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `name` | Name of the attribute to set by the extension. For example, `"my_attr"` will be available as `doc._.my_attr`. ~~str~~ |
|
||
| `default` | Optional default value of the attribute if no getter or method is defined. ~~Optional[Any]~~ |
|
||
| `method` | Set a custom method on the object, for example `doc._.compare(other_doc)`. ~~Optional[Callable[[Doc, ...], Any]]~~ |
|
||
| `getter` | Getter function that takes the object and returns an attribute value. Is called when the user accesses the `._` attribute. ~~Optional[Callable[[Doc], Any]]~~ |
|
||
| `setter` | Setter function that takes the `Doc` and a value, and modifies the object. Is called when the user writes to the `Doc._` attribute. ~~Optional[Callable[[Doc, Any], None]]~~ |
|
||
| `force` | Force overwriting existing attribute. ~~bool~~ |
|
||
|
||
## Doc.get_extension {#get_extension tag="classmethod" new="2"}
|
||
|
||
Look up a previously registered extension by name. Returns a 4-tuple
|
||
`(default, method, getter, setter)` if the extension is registered. Raises a
|
||
`KeyError` otherwise.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.tokens import Doc
|
||
> Doc.set_extension("has_city", default=False)
|
||
> extension = Doc.get_extension("has_city")
|
||
> assert extension == (False, None, None, None)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `name` | Name of the extension. ~~str~~ |
|
||
| **RETURNS** | A `(default, method, getter, setter)` tuple of the extension. ~~Tuple[Optional[Any], Optional[Callable], Optional[Callable], Optional[Callable]]~~ |
|
||
|
||
## Doc.has_extension {#has_extension tag="classmethod" new="2"}
|
||
|
||
Check whether an extension has been registered on the `Doc` class.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.tokens import Doc
|
||
> Doc.set_extension("has_city", default=False)
|
||
> assert Doc.has_extension("has_city")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | --------------------------------------------------- |
|
||
| `name` | Name of the extension to check. ~~str~~ |
|
||
| **RETURNS** | Whether the extension has been registered. ~~bool~~ |
|
||
|
||
## Doc.remove_extension {#remove_extension tag="classmethod" new="2.0.12"}
|
||
|
||
Remove a previously registered extension.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.tokens import Doc
|
||
> Doc.set_extension("has_city", default=False)
|
||
> removed = Doc.remove_extension("has_city")
|
||
> assert not Doc.has_extension("has_city")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `name` | Name of the extension. ~~str~~ |
|
||
| **RETURNS** | A `(default, method, getter, setter)` tuple of the removed extension. ~~Tuple[Optional[Any], Optional[Callable], Optional[Callable], Optional[Callable]]~~ |
|
||
|
||
## Doc.char_span {#char_span tag="method" new="2"}
|
||
|
||
Create a `Span` object from the slice `doc.text[start_idx:end_idx]`. Returns
|
||
`None` if the character indices don't map to a valid span using the default mode
|
||
`"strict".
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like New York")
|
||
> span = doc.char_span(7, 15, label="GPE")
|
||
> assert span.text == "New York"
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `start` | The index of the first character of the span. ~~int~~ |
|
||
| `end` | The index of the last character after the span. ~int~~ |
|
||
| `label` | A label to attach to the span, e.g. for named entities. ~~Union[int, str]~~ |
|
||
| `kb_id` <Tag variant="new">2.2</Tag> | An ID from a knowledge base to capture the meaning of a named entity. ~~Union[int, str]~~ |
|
||
| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||
| `mode` | How character indices snap to token boundaries. Options: `"strict"` (no snapping), `"inside"` (span of all tokens completely within the character span), `"outside"` (span of all tokens at least partially covered by the character span). Defaults to `"strict"`. ~~str~~ |
|
||
| **RETURNS** | The newly constructed object or `None`. ~~Optional[Span]~~ |
|
||
|
||
## Doc.similarity {#similarity tag="method" model="vectors"}
|
||
|
||
Make a semantic similarity estimate. The default estimate is cosine similarity
|
||
using an average of word vectors.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> apples = nlp("I like apples")
|
||
> oranges = nlp("I like oranges")
|
||
> apples_oranges = apples.similarity(oranges)
|
||
> oranges_apples = oranges.similarity(apples)
|
||
> assert apples_oranges == oranges_apples
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | -------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `other` | The object to compare with. By default, accepts `Doc`, `Span`, `Token` and `Lexeme` objects. ~~Union[Doc, Span, Token, Lexeme]~~ |
|
||
| **RETURNS** | A scalar similarity score. Higher is more similar. ~~float~~ |
|
||
|
||
## Doc.count_by {#count_by tag="method"}
|
||
|
||
Count the frequencies of a given attribute. Produces a dict of
|
||
`{attr (int): count (ints)}` frequencies, keyed by the values of the given
|
||
attribute ID.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.attrs import ORTH
|
||
> doc = nlp("apple apple orange banana")
|
||
> assert doc.count_by(ORTH) == {7024: 1, 119552: 1, 2087: 2}
|
||
> doc.to_array([ORTH])
|
||
> # array([[11880], [11880], [7561], [12800]])
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | --------------------------------------------------------------------- |
|
||
| `attr_id` | The attribute ID. ~~int~~ |
|
||
| **RETURNS** | A dictionary mapping attributes to integer counts. ~~Dict[int, int]~~ |
|
||
|
||
## Doc.get_lca_matrix {#get_lca_matrix tag="method"}
|
||
|
||
Calculates the lowest common ancestor matrix for a given `Doc`. Returns LCA
|
||
matrix containing the integer index of the ancestor, or `-1` if no common
|
||
ancestor is found, e.g. if span excludes a necessary ancestor.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("This is a test")
|
||
> matrix = doc.get_lca_matrix()
|
||
> # array([[0, 1, 1, 1], [1, 1, 1, 1], [1, 1, 2, 3], [1, 1, 3, 3]], dtype=int32)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | -------------------------------------------------------------------------------------- |
|
||
| **RETURNS** | The lowest common ancestor matrix of the `Doc`. ~~numpy.ndarray[ndim=2, dtype=int32]~~ |
|
||
|
||
## Doc.to_array {#to_array tag="method"}
|
||
|
||
Export given token attributes to a numpy `ndarray`. If `attr_ids` is a sequence
|
||
of `M` attributes, the output array will be of shape `(N, M)`, where `N` is the
|
||
length of the `Doc` (in tokens). If `attr_ids` is a single attribute, the output
|
||
shape will be `(N,)`. You can specify attributes by integer ID (e.g.
|
||
`spacy.attrs.LEMMA`) or string name (e.g. "LEMMA" or "lemma"). The values will
|
||
be 64-bit integers.
|
||
|
||
Returns a 2D array with one row per token and one column per attribute (when
|
||
`attr_ids` is a list), or as a 1D numpy array, with one item per attribute (when
|
||
`attr_ids` is a single value).
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
|
||
> doc = nlp(text)
|
||
> # All strings mapped to integers, for easy export to numpy
|
||
> np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
|
||
> np_array = doc.to_array("POS")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ---------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `attr_ids` | A list of attributes (int IDs or string names) or a single attribute (int ID or string name). ~~Union[int, str, List[Union[int, str]]]~~ |
|
||
| **RETURNS** | The exported attributes as a numpy array. ~~Union[numpy.ndarray[ndim=2, dtype=uint64], numpy.ndarray[ndim=1, dtype=uint64]]~~ |
|
||
|
||
## Doc.from_array {#from_array tag="method"}
|
||
|
||
Load attributes from a numpy array. Write to a `Doc` object, from an `(M, N)`
|
||
array of attributes.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
|
||
> from spacy.tokens import Doc
|
||
> doc = nlp("Hello world!")
|
||
> np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
|
||
> doc2 = Doc(doc.vocab, words=[t.text for t in doc])
|
||
> doc2.from_array([LOWER, POS, ENT_TYPE, IS_ALPHA], np_array)
|
||
> assert doc[0].pos_ == doc2[0].pos_
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ------------------------------------------------------------------------------------------- |
|
||
| `attrs` | A list of attribute ID ints. ~~List[int]~~ |
|
||
| `array` | The attribute values to load. ~~numpy.ndarray[ndim=2, dtype=int32]~~ |
|
||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
| **RETURNS** | The `Doc` itself. ~~Doc~~ |
|
||
|
||
## Doc.from_docs {#from_docs tag="staticmethod" new="3"}
|
||
|
||
Concatenate multiple `Doc` objects to form a new one. Raises an error if the
|
||
`Doc` objects do not all share the same `Vocab`.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.tokens import Doc
|
||
> texts = ["London is the capital of the United Kingdom.",
|
||
> "The River Thames flows through London.",
|
||
> "The famous Tower Bridge crosses the River Thames."]
|
||
> docs = list(nlp.pipe(texts))
|
||
> c_doc = Doc.from_docs(docs)
|
||
> assert str(c_doc) == " ".join(texts)
|
||
> assert len(list(c_doc.sents)) == len(docs)
|
||
> assert [str(ent) for ent in c_doc.ents] == \
|
||
> [str(ent) for doc in docs for ent in doc.ents]
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------------------- | ----------------------------------------------------------------------------------------------------------------- |
|
||
| `docs` | A list of `Doc` objects. ~~List[Doc]~~ |
|
||
| `ensure_whitespace` | Insert a space between two adjacent docs whenever the first doc does not end in whitespace. ~~bool~~ |
|
||
| `attrs` | Optional list of attribute ID ints or attribute name strings. ~~Optional[List[Union[str, int]]]~~ |
|
||
| **RETURNS** | The new `Doc` object that is containing the other docs or `None`, if `docs` is empty or `None`. ~~Optional[Doc]~~ |
|
||
|
||
## Doc.to_disk {#to_disk tag="method" new="2"}
|
||
|
||
Save the current state to a directory.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc.to_disk("/path/to/doc")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
||
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||
| _keyword-only_ | |
|
||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
|
||
## Doc.from_disk {#from_disk tag="method" new="2"}
|
||
|
||
Loads state from a directory. Modifies the object in place and returns it.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.tokens import Doc
|
||
> from spacy.vocab import Vocab
|
||
> doc = Doc(Vocab()).from_disk("/path/to/doc")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ----------------------------------------------------------------------------------------------- |
|
||
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||
| _keyword-only_ | |
|
||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
| **RETURNS** | The modified `Doc` object. ~~Doc~~ |
|
||
|
||
## Doc.to_bytes {#to_bytes tag="method"}
|
||
|
||
Serialize, i.e. export the document contents to a binary string.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("Give it back! He pleaded.")
|
||
> doc_bytes = doc.to_bytes()
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||
| _keyword-only_ | |
|
||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
| **RETURNS** | A losslessly serialized copy of the `Doc`, including all annotations. ~~bytes~~ |
|
||
|
||
## Doc.from_bytes {#from_bytes tag="method"}
|
||
|
||
Deserialize, i.e. import the document contents from a binary string.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.tokens import Doc
|
||
> doc = nlp("Give it back! He pleaded.")
|
||
> doc_bytes = doc.to_bytes()
|
||
> doc2 = Doc(doc.vocab).from_bytes(doc_bytes)
|
||
> assert doc.text == doc2.text
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||
| `data` | The string to load from. ~~bytes~~ |
|
||
| _keyword-only_ | |
|
||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
| **RETURNS** | The `Doc` object. ~~Doc~~ |
|
||
|
||
## Doc.retokenize {#retokenize tag="contextmanager" new="2.1"}
|
||
|
||
Context manager to handle retokenization of the `Doc`. Modifications to the
|
||
`Doc`'s tokenization are stored, and then made all at once when the context
|
||
manager exits. This is much more efficient, and less error-prone. All views of
|
||
the `Doc` (`Span` and `Token`) created before the retokenization are
|
||
invalidated, although they may accidentally continue to work.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("Hello world!")
|
||
> with doc.retokenize() as retokenizer:
|
||
> retokenizer.merge(doc[0:2])
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | -------------------------------- |
|
||
| **RETURNS** | The retokenizer. ~~Retokenizer~~ |
|
||
|
||
### Retokenizer.merge {#retokenizer.merge tag="method"}
|
||
|
||
Mark a span for merging. The `attrs` will be applied to the resulting token (if
|
||
they're context-dependent token attributes like `LEMMA` or `DEP`) or to the
|
||
underlying lexeme (if they're context-independent lexical attributes like
|
||
`LOWER` or `IS_STOP`). Writable custom extension attributes can be provided as a
|
||
dictionary mapping attribute names to values as the `"_"` key.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like David Bowie")
|
||
> with doc.retokenize() as retokenizer:
|
||
> attrs = {"LEMMA": "David Bowie"}
|
||
> retokenizer.merge(doc[2:4], attrs=attrs)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------- | --------------------------------------------------------------------- |
|
||
| `span` | The span to merge. ~~Span~~ |
|
||
| `attrs` | Attributes to set on the merged token. ~~Dict[Union[str, int], Any]~~ |
|
||
|
||
### Retokenizer.split {#retokenizer.split tag="method"}
|
||
|
||
Mark a token for splitting, into the specified `orths`. The `heads` are required
|
||
to specify how the new subtokens should be integrated into the dependency tree.
|
||
The list of per-token heads can either be a token in the original document, e.g.
|
||
`doc[2]`, or a tuple consisting of the token in the original document and its
|
||
subtoken index. For example, `(doc[3], 1)` will attach the subtoken to the
|
||
second subtoken of `doc[3]`.
|
||
|
||
This mechanism allows attaching subtokens to other newly created subtokens,
|
||
without having to keep track of the changing token indices. If the specified
|
||
head token will be split within the retokenizer block and no subtoken index is
|
||
specified, it will default to `0`. Attributes to set on subtokens can be
|
||
provided as a list of values. They'll be applied to the resulting token (if
|
||
they're context-dependent token attributes like `LEMMA` or `DEP`) or to the
|
||
underlying lexeme (if they're context-independent lexical attributes like
|
||
`LOWER` or `IS_STOP`).
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I live in NewYork")
|
||
> with doc.retokenize() as retokenizer:
|
||
> heads = [(doc[3], 1), doc[2]]
|
||
> attrs = {"POS": ["PROPN", "PROPN"],
|
||
> "DEP": ["pobj", "compound"]}
|
||
> retokenizer.split(doc[3], ["New", "York"], heads=heads, attrs=attrs)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------- | ----------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `token` | The token to split. ~~Token~~ |
|
||
| `orths` | The verbatim text of the split tokens. Needs to match the text of the original token. ~~List[str]~~ |
|
||
| `heads` | List of `token` or `(token, subtoken)` tuples specifying the tokens to attach the newly split subtokens to. ~~List[Union[Token, Tuple[Token, int]]]~~ |
|
||
| `attrs` | Attributes to set on all split tokens. Attribute names mapped to list of per-token attribute values. ~~Dict[Union[str, int], List[Any]]~~ |
|
||
|
||
## Doc.ents {#ents tag="property" model="NER"}
|
||
|
||
The named entities in the document. Returns a tuple of named entity `Span`
|
||
objects, if the entity recognizer has been applied.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("Mr. Best flew to New York on Saturday morning.")
|
||
> ents = list(doc.ents)
|
||
> assert ents[0].label == 346
|
||
> assert ents[0].label_ == "PERSON"
|
||
> assert ents[0].text == "Mr. Best"
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | --------------------------------------------------------------------- |
|
||
| **RETURNS** | Entities in the document, one `Span` per entity. ~~Tuple[Span, ...]~~ |
|
||
|
||
## Doc.noun_chunks {#noun_chunks tag="property" model="parser"}
|
||
|
||
Iterate over the base noun phrases in the document. Yields base noun-phrase
|
||
`Span` objects, if the document has been syntactically parsed. A base noun
|
||
phrase, or "NP chunk", is a noun phrase that does not permit other NPs to be
|
||
nested within it – so no NP-level coordination, no prepositional phrases, and no
|
||
relative clauses.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("A phrase with another phrase occurs.")
|
||
> chunks = list(doc.noun_chunks)
|
||
> assert chunks[0].text == "A phrase"
|
||
> assert chunks[1].text == "another phrase"
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ---------- | ------------------------------------- |
|
||
| **YIELDS** | Noun chunks in the document. ~~Span~~ |
|
||
|
||
## Doc.sents {#sents tag="property" model="parser"}
|
||
|
||
Iterate over the sentences in the document. Sentence spans have no label. To
|
||
improve accuracy on informal texts, spaCy calculates sentence boundaries from
|
||
the syntactic dependency parse. If the parser is disabled, the `sents` iterator
|
||
will be unavailable.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("This is a sentence. Here's another...")
|
||
> sents = list(doc.sents)
|
||
> assert len(sents) == 2
|
||
> assert [s.root.text for s in sents] == ["is", "'s"]
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ---------- | ----------------------------------- |
|
||
| **YIELDS** | Sentences in the document. ~~Span~~ |
|
||
|
||
## Doc.has_vector {#has_vector tag="property" model="vectors"}
|
||
|
||
A boolean value indicating whether a word vector is associated with the object.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like apples")
|
||
> assert doc.has_vector
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | --------------------------------------------------------- |
|
||
| **RETURNS** | Whether the document has a vector data attached. ~~bool~~ |
|
||
|
||
## Doc.vector {#vector tag="property" model="vectors"}
|
||
|
||
A real-valued meaning representation. Defaults to an average of the token
|
||
vectors.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like apples")
|
||
> assert doc.vector.dtype == "float32"
|
||
> assert doc.vector.shape == (300,)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | -------------------------------------------------------------------------------------------------- |
|
||
| **RETURNS** | A 1-dimensional array representing the document's vector. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||
|
||
## Doc.vector_norm {#vector_norm tag="property" model="vectors"}
|
||
|
||
The L2 norm of the document's vector representation.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc1 = nlp("I like apples")
|
||
> doc2 = nlp("I like oranges")
|
||
> doc1.vector_norm # 4.54232424414368
|
||
> doc2.vector_norm # 3.304373298575751
|
||
> assert doc1.vector_norm != doc2.vector_norm
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | --------------------------------------------------- |
|
||
| **RETURNS** | The L2 norm of the vector representation. ~~float~~ |
|
||
|
||
## Attributes {#attributes}
|
||
|
||
| Name | Description |
|
||
| --------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `text` | A string representation of the document text. ~~str~~ |
|
||
| `text_with_ws` | An alias of `Doc.text`, provided for duck-type compatibility with `Span` and `Token`. ~~str~~ |
|
||
| `mem` | The document's local memory heap, for all C data it owns. ~~cymem.Pool~~ |
|
||
| `vocab` | The store of lexical types. ~~Vocab~~ |
|
||
| `tensor` <Tag variant="new">2</Tag> | Container for dense vector representations. ~~numpy.ndarray~~ |
|
||
| `cats` <Tag variant="new">2</Tag> | Maps a label to a score for categories applied to the document. The label is a string and the score should be a float. ~~Dict[str, float]~~ |
|
||
| `user_data` | A generic storage area, for user custom data. ~~Dict[str, Any]~~ |
|
||
| `lang` <Tag variant="new">2.1</Tag> | Language of the document's vocabulary. ~~int~~ |
|
||
| `lang_` <Tag variant="new">2.1</Tag> | Language of the document's vocabulary. ~~str~~ |
|
||
| `is_tagged` | A flag indicating that the document has been part-of-speech tagged. Returns `True` if the `Doc` is empty. ~~bool~~ |
|
||
| `is_parsed` | A flag indicating that the document has been syntactically parsed. Returns `True` if the `Doc` is empty. ~~bool~~ |
|
||
| `is_sentenced` | A flag indicating that sentence boundaries have been applied to the document. Returns `True` if the `Doc` is empty. ~~bool~~ |
|
||
| `is_nered` <Tag variant="new">2.1</Tag> | A flag indicating that named entities have been set. Will return `True` if the `Doc` is empty, or if _any_ of the tokens has an entity tag set, even if the others are unknown. ~~bool~~ |
|
||
| `sentiment` | The document's positivity/negativity score, if available. ~~float~~ |
|
||
| `user_hooks` | A dictionary that allows customization of the `Doc`'s properties. ~~Dict[str, Callable]~~ |
|
||
| `user_token_hooks` | A dictionary that allows customization of properties of `Token` children. ~~Dict[str, Callable]~~ |
|
||
| `user_span_hooks` | A dictionary that allows customization of properties of `Span` children. ~~Dict[str, Callable]~~ |
|
||
| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ |
|
||
|
||
## Serialization fields {#serialization-fields}
|
||
|
||
During serialization, spaCy will export several data fields used to restore
|
||
different aspects of the object. If needed, you can exclude them from
|
||
serialization by passing in the string names via the `exclude` argument.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> data = doc.to_bytes(exclude=["text", "tensor"])
|
||
> doc.from_disk("./doc.bin", exclude=["user_data"])
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------------------ | --------------------------------------------- |
|
||
| `text` | The value of the `Doc.text` attribute. |
|
||
| `sentiment` | The value of the `Doc.sentiment` attribute. |
|
||
| `tensor` | The value of the `Doc.tensor` attribute. |
|
||
| `user_data` | The value of the `Doc.user_data` dictionary. |
|
||
| `user_data_keys` | The keys of the `Doc.user_data` dictionary. |
|
||
| `user_data_values` | The values of the `Doc.user_data` dictionary. |
|