mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			347 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			347 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
title: Morphologizer
 | 
						|
tag: class
 | 
						|
source: spacy/pipeline/morphologizer.pyx
 | 
						|
new: 3
 | 
						|
---
 | 
						|
 | 
						|
A trainable pipeline component to predict morphological features and
 | 
						|
coarse-grained POS tags following the Universal Dependencies
 | 
						|
[UPOS](https://universaldependencies.org/u/pos/index.html) and
 | 
						|
[FEATS](https://universaldependencies.org/format.html#morphological-annotation)
 | 
						|
annotation guidelines. This class is a subclass of `Pipe` and follows the same
 | 
						|
API. The component is also available via the string name `"morphologizer"`.
 | 
						|
After initialization, it is typically added to the processing pipeline using
 | 
						|
[`nlp.add_pipe`](/api/language#add_pipe).
 | 
						|
 | 
						|
## Default config {#config}
 | 
						|
 | 
						|
This is the default configuration used to initialize the model powering the
 | 
						|
pipeline component. See the [model architectures](/api/architectures)
 | 
						|
documentation for details on the architectures and their arguments and
 | 
						|
hyperparameters. To learn more about how to customize the config and train
 | 
						|
custom models, check out the [training config](/usage/training#config) docs.
 | 
						|
 | 
						|
```python
 | 
						|
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/defaults/morphologizer_defaults.cfg
 | 
						|
```
 | 
						|
 | 
						|
## Morphologizer.\_\_init\_\_ {#init tag="method"}
 | 
						|
 | 
						|
Initialize the morphologizer.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> # Construction via create_pipe
 | 
						|
> morphologizer = nlp.create_pipe("morphologizer")
 | 
						|
>
 | 
						|
> # Construction from class
 | 
						|
> from spacy.pipeline import Morphologizer
 | 
						|
> morphologizer = Morphologizer()
 | 
						|
> ```
 | 
						|
 | 
						|
 | 
						|
Create a new pipeline instance. In your application, you would normally use a
 | 
						|
shortcut for this and instantiate the component using its string name and
 | 
						|
[`nlp.create_pipe`](/api/language#create_pipe).
 | 
						|
 | 
						|
| Name        | Type     | Description                                                                     |
 | 
						|
| ----------- | -------- | ------------------------------------------------------------------------------- |
 | 
						|
| `vocab`     | `Vocab`  | The shared vocabulary.                                                          |
 | 
						|
| `model`     | `Model`  | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. |
 | 
						|
| `**cfg`     | -        | Configuration parameters.                                                       |
 | 
						|
| **RETURNS** | `Morphologizer` | The newly constructed object.                                                   |
 | 
						|
 | 
						|
## Morphologizer.\_\_call\_\_ {#call tag="method"}
 | 
						|
 | 
						|
Apply the pipe to one document. The document is modified in place, and returned.
 | 
						|
This usually happens under the hood when the `nlp` object is called on a text
 | 
						|
and all pipeline components are applied to the `Doc` in order. Both
 | 
						|
[`__call__`](/api/morphologizer#call) and [`pipe`](/api/morphologizer#pipe) delegate to the
 | 
						|
[`predict`](/api/morphologizer#predict) and
 | 
						|
[`set_annotations`](/api/morphologizer#set_annotations) methods.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> morphologizer = Morphologizer(nlp.vocab)
 | 
						|
> doc = nlp("This is a sentence.")
 | 
						|
> # This usually happens under the hood
 | 
						|
> processed = morphologizer(doc)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type  | Description              |
 | 
						|
| ----------- | ----- | ------------------------ |
 | 
						|
| `doc`       | `Doc` | The document to process. |
 | 
						|
| **RETURNS** | `Doc` | The processed document.  |
 | 
						|
 | 
						|
## Morphologizer.pipe {#pipe tag="method"}
 | 
						|
 | 
						|
Apply the pipe to a stream of documents. This usually happens under the hood
 | 
						|
when the `nlp` object is called on a text and all pipeline components are
 | 
						|
applied to the `Doc` in order. Both [`__call__`](/api/morphologizer#call) and
 | 
						|
[`pipe`](/api/morphologizer#pipe) delegate to the [`predict`](/api/morphologizer#predict) and
 | 
						|
[`set_annotations`](/api/morphologizer#set_annotations) methods.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> morphologizer = Morphologizer(nlp.vocab)
 | 
						|
> for doc in morphologizer.pipe(docs, batch_size=50):
 | 
						|
>     pass
 | 
						|
> ```
 | 
						|
 | 
						|
| Name         | Type            | Description                                            |
 | 
						|
| ------------ | --------------- | ------------------------------------------------------ |
 | 
						|
| `stream`     | `Iterable[Doc]` | A stream of documents.                                 |
 | 
						|
| `batch_size` | int             | The number of texts to buffer. Defaults to `128`.      |
 | 
						|
| **YIELDS**   | `Doc`           | Processed documents in the order of the original text. |
 | 
						|
 | 
						|
## Morphologizer.predict {#predict tag="method"}
 | 
						|
 | 
						|
Apply the pipeline's model to a batch of docs, without modifying them.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> morphologizer = Morphologizer(nlp.vocab)
 | 
						|
> scores = morphologizer.predict([doc1, doc2])
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type            | Description                               |
 | 
						|
| ----------- | --------------- | ----------------------------------------- |
 | 
						|
| `docs`      | `Iterable[Doc]` | The documents to predict.                 |
 | 
						|
| **RETURNS** | -               | The model's prediction for each document. |
 | 
						|
 | 
						|
## Morphologizer.set_annotations {#set_annotations tag="method"}
 | 
						|
 | 
						|
Modify a batch of documents, using pre-computed scores.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> morphologizer = Morphologizer(nlp.vocab)
 | 
						|
> scores = morphologizer.predict([doc1, doc2])
 | 
						|
> morphologizer.set_annotations([doc1, doc2], scores)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name     | Type            | Description                                      |
 | 
						|
| -------- | --------------- | ------------------------------------------------ |
 | 
						|
| `docs`   | `Iterable[Doc]` | The documents to modify.                         |
 | 
						|
| `scores` | -               | The scores to set, produced by `Morphologizer.predict`. |
 | 
						|
 | 
						|
## Morphologizer.update {#update tag="method"}
 | 
						|
 | 
						|
Learn from a batch of documents and gold-standard information, updating the
 | 
						|
pipe's model. Delegates to [`predict`](/api/morphologizer#predict) and
 | 
						|
[`get_loss`](/api/morphologizer#get_loss).
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> morphologizer = Morphologizer(nlp.vocab, morphologizer_model)
 | 
						|
> optimizer = nlp.begin_training()
 | 
						|
> losses = morphologizer.update(examples, sgd=optimizer)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name              | Type                | Description                                                                                                                          |
 | 
						|
| ----------------- | ------------------- | ------------------------------------------------------------------------------------------------------------------------------------ |
 | 
						|
| `examples`        | `Iterable[Example]` | A batch of [`Example`](/api/example) objects to learn from.                                                                          |
 | 
						|
| _keyword-only_    |                     |                                                                                                                                      |
 | 
						|
| `drop`            | float               | The dropout rate.                                                                                                                    |
 | 
						|
| `set_annotations` | bool                | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/morphologizer#set_annotations). |
 | 
						|
| `sgd`             | `Optimizer`         | The [`Optimizer`](https://thinc.ai/docs/api-optimizers) object.                                                                      |
 | 
						|
| `losses`          | `Dict[str, float]`  | Optional record of the loss during training. The value keyed by the model's name is updated.                                         |
 | 
						|
| **RETURNS**       | `Dict[str, float]`  | The updated `losses` dictionary.                                                                                                     |
 | 
						|
 | 
						|
## Morphologizer.get_loss {#get_loss tag="method"}
 | 
						|
 | 
						|
Find the loss and gradient of loss for the batch of documents and their
 | 
						|
predicted scores.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> morphologizer = Morphologizer(nlp.vocab)
 | 
						|
> scores = morphologizer.predict([eg.predicted for eg in examples])
 | 
						|
> loss, d_loss = morphologizer.get_loss(examples, scores)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type                | Description                                         |
 | 
						|
| ----------- | ------------------- | --------------------------------------------------- |
 | 
						|
| `examples`  | `Iterable[Example]` | The batch of examples.                              |
 | 
						|
| `scores`    | -                   | Scores representing the model's predictions.        |
 | 
						|
| **RETURNS** | tuple               | The loss and the gradient, i.e. `(loss, gradient)`. |
 | 
						|
 | 
						|
## Morphologizer.begin_training {#begin_training tag="method"}
 | 
						|
 | 
						|
Initialize the pipe for training, using data examples if available. Return an
 | 
						|
[`Optimizer`](https://thinc.ai/docs/api-optimizers) object.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> morphologizer = Morphologizer(nlp.vocab)
 | 
						|
> nlp.pipeline.append(morphologizer)
 | 
						|
> optimizer = morphologizer.begin_training(pipeline=nlp.pipeline)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Type                    | Description                                                                                                                                                |
 | 
						|
| -------------- | ----------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `get_examples` | `Iterable[Example]`     | Optional gold-standard annotations in the form of [`Example`](/api/example) objects.                                                                       |
 | 
						|
| `pipeline`     | `List[(str, callable)]` | Optional list of pipeline components that this component is part of.                                                                                       |
 | 
						|
| `sgd`          | `Optimizer`             | An optional [`Optimizer`](https://thinc.ai/docs/api-optimizers) object. Will be created via [`create_optimizer`](/api/morphologizer#create_optimizer) if not set. |
 | 
						|
| **RETURNS**    | `Optimizer`             | An optimizer.                                                                                                                                              |
 | 
						|
 | 
						|
## Morphologizer.create_optimizer {#create_optimizer tag="method"}
 | 
						|
 | 
						|
Create an optimizer for the pipeline component.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> morphologizer = Morphologizer(nlp.vocab)
 | 
						|
> optimizer = morphologizer.create_optimizer()
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type        | Description                                                     |
 | 
						|
| ----------- | ----------- | --------------------------------------------------------------- |
 | 
						|
| **RETURNS** | `Optimizer` | The [`Optimizer`](https://thinc.ai/docs/api-optimizers) object. |
 | 
						|
 | 
						|
## Morphologizer.use_params {#use_params tag="method, contextmanager"}
 | 
						|
 | 
						|
Modify the pipe's model, to use the given parameter values.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> morphologizer = Morphologizer(nlp.vocab)
 | 
						|
> with morphologizer.use_params():
 | 
						|
>     morphologizer.to_disk("/best_model")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name     | Type | Description                                                                                                |
 | 
						|
| -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
 | 
						|
| `params` | -    | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
 | 
						|
 | 
						|
## Morphologizer.add_label {#add_label tag="method"}
 | 
						|
 | 
						|
Add a new label to the pipe. If the `Morphologizer` should set annotations for
 | 
						|
both `pos` and `morph`, the label should include the UPOS as the feature `POS`.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> morphologizer = Morphologizer(nlp.vocab)
 | 
						|
> morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name     | Type | Description                                                     |
 | 
						|
| -------- | ---- | --------------------------------------------------------------- |
 | 
						|
| `label`  | str  | The label to add.                                               |
 | 
						|
 | 
						|
## Morphologizer.to_disk {#to_disk tag="method"}
 | 
						|
 | 
						|
Serialize the pipe to disk.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> morphologizer = Morphologizer(nlp.vocab)
 | 
						|
> morphologizer.to_disk("/path/to/morphologizer")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name      | Type         | Description                                                                                                           |
 | 
						|
| --------- | ------------ | --------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `path`    | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
 | 
						|
| `exclude` | list         | String names of [serialization fields](#serialization-fields) to exclude.                                             |
 | 
						|
 | 
						|
## Morphologizer.from_disk {#from_disk tag="method"}
 | 
						|
 | 
						|
Load the pipe from disk. Modifies the object in place and returns it.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> morphologizer = Morphologizer(nlp.vocab)
 | 
						|
> morphologizer.from_disk("/path/to/morphologizer")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type         | Description                                                                |
 | 
						|
| ----------- | ------------ | -------------------------------------------------------------------------- |
 | 
						|
| `path`      | str / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
 | 
						|
| `exclude`   | list         | String names of [serialization fields](#serialization-fields) to exclude.  |
 | 
						|
| **RETURNS** | `Morphologizer`     | The modified `Morphologizer` object.                                              |
 | 
						|
 | 
						|
## Morphologizer.to_bytes {#to_bytes tag="method"}
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> morphologizer = Morphologizer(nlp.vocab)
 | 
						|
> morphologizer_bytes = morphologizer.to_bytes()
 | 
						|
> ```
 | 
						|
 | 
						|
Serialize the pipe to a bytestring.
 | 
						|
 | 
						|
| Name        | Type  | Description                                                               |
 | 
						|
| ----------- | ----- | ------------------------------------------------------------------------- |
 | 
						|
| `exclude`   | list  | String names of [serialization fields](#serialization-fields) to exclude. |
 | 
						|
| **RETURNS** | bytes | The serialized form of the `Morphologizer` object.                               |
 | 
						|
 | 
						|
## Morphologizer.from_bytes {#from_bytes tag="method"}
 | 
						|
 | 
						|
Load the pipe from a bytestring. Modifies the object in place and returns it.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> morphologizer_bytes = morphologizer.to_bytes()
 | 
						|
> morphologizer = Morphologizer(nlp.vocab)
 | 
						|
> morphologizer.from_bytes(morphologizer_bytes)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name         | Type     | Description                                                               |
 | 
						|
| ------------ | -------- | ------------------------------------------------------------------------- |
 | 
						|
| `bytes_data` | bytes    | The data to load from.                                                    |
 | 
						|
| `exclude`    | list     | String names of [serialization fields](#serialization-fields) to exclude. |
 | 
						|
| **RETURNS**  | `Morphologizer` | The `Morphologizer` object.                                                      |
 | 
						|
 | 
						|
## Morphologizer.labels {#labels tag="property"}
 | 
						|
 | 
						|
The labels currently added to the component in Universal Dependencies [FEATS
 | 
						|
format](https://universaldependencies.org/format.html#morphological-annotation).
 | 
						|
Note that even for a blank component, this will always include the internal
 | 
						|
empty label `_`. If POS features are used, the labels will include the
 | 
						|
coarse-grained POS as the feature `POS`.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin")
 | 
						|
> assert "Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin" in morphologizer.labels
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Type  | Description                        |
 | 
						|
| ----------- | ----- | ---------------------------------- |
 | 
						|
| **RETURNS** | tuple | The labels added to the component. |
 | 
						|
 | 
						|
## Serialization fields {#serialization-fields}
 | 
						|
 | 
						|
During serialization, spaCy will export several data fields used to restore
 | 
						|
different aspects of the object. If needed, you can exclude them from
 | 
						|
serialization by passing in the string names via the `exclude` argument.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> data = morphologizer.to_disk("/path", exclude=["vocab"])
 | 
						|
> ```
 | 
						|
 | 
						|
| Name      | Description                                                                                |
 | 
						|
| --------- | ------------------------------------------------------------------------------------------ |
 | 
						|
| `vocab`   | The shared [`Vocab`](/api/vocab).                                                          |
 | 
						|
| `cfg`     | The config file. You usually don't want to exclude this.                                   |
 | 
						|
| `model`   | The binary model data. You usually don't want to exclude this.                             |
 |