mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			318 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			318 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
title: Lemmatizer
 | 
						|
tag: class
 | 
						|
source: spacy/pipeline/lemmatizer.py
 | 
						|
new: 3
 | 
						|
teaser: 'Pipeline component for lemmatization'
 | 
						|
api_base_class: /api/pipe
 | 
						|
api_string_name: lemmatizer
 | 
						|
api_trainable: false
 | 
						|
---
 | 
						|
 | 
						|
Component for assigning base forms to tokens using rules based on part-of-speech
 | 
						|
tags, or lookup tables. Functionality to train the component is coming soon.
 | 
						|
Different [`Language`](/api/language) subclasses can implement their own
 | 
						|
lemmatizer components via
 | 
						|
[language-specific factories](/usage/processing-pipelines#factories-language).
 | 
						|
The default data used is provided by the
 | 
						|
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data)
 | 
						|
extension package.
 | 
						|
 | 
						|
<Infobox variant="warning" title="New in v3.0">
 | 
						|
 | 
						|
As of v3.0, the `Lemmatizer` is a **standalone pipeline component** that can be
 | 
						|
added to your pipeline, and not a hidden part of the vocab that runs behind the
 | 
						|
scenes. This makes it easier to customize how lemmas should be assigned in your
 | 
						|
pipeline.
 | 
						|
 | 
						|
If the lemmatization mode is set to `"rule"`, which requires coarse-grained POS
 | 
						|
(`Token.pos`) to be assigned, make sure a [`Tagger`](/api/tagger),
 | 
						|
[`Morphologizer`](/api/morphologizer) or another component assigning POS is
 | 
						|
available in the pipeline and runs _before_ the lemmatizer.
 | 
						|
 | 
						|
</Infobox>
 | 
						|
 | 
						|
## Config and implementation
 | 
						|
 | 
						|
The default config is defined by the pipeline component factory and describes
 | 
						|
how the component should be configured. You can override its settings via the
 | 
						|
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | 
						|
[`config.cfg` for training](/usage/training#config). For examples of the lookups
 | 
						|
data format used by the lookup and rule-based lemmatizers, see
 | 
						|
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data).
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> config = {"mode": "rule"}
 | 
						|
> nlp.add_pipe("lemmatizer", config=config)
 | 
						|
> ```
 | 
						|
 | 
						|
| Setting     | Description                                                                                                                                               |
 | 
						|
| ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `mode`      | The lemmatizer mode, e.g. `"lookup"` or `"rule"`. Defaults to `lookup` if no language-specific lemmatizer is available (see the following table). ~~str~~ |
 | 
						|
| `overwrite` | Whether to overwrite existing lemmas. Defaults to `False`. ~~bool~~                                                                                       |
 | 
						|
| `model`     | **Not yet implemented:** the model to use. ~~Model~~                                                                                                      |
 | 
						|
 | 
						|
Many languages specify a default lemmatizer mode other than `lookup` if a better
 | 
						|
lemmatizer is available. The lemmatizer modes `rule` and `pos_lookup` require
 | 
						|
[`token.pos`](/api/token) from a previous pipeline component (see example
 | 
						|
pipeline configurations in the
 | 
						|
[pretrained pipeline design details](/models#design-cnn)) or rely on third-party
 | 
						|
libraries (`pymorphy2`).
 | 
						|
 | 
						|
| Language | Default Mode |
 | 
						|
| -------- | ------------ |
 | 
						|
| `bn`     | `rule`       |
 | 
						|
| `ca`     | `pos_lookup` |
 | 
						|
| `el`     | `rule`       |
 | 
						|
| `en`     | `rule`       |
 | 
						|
| `es`     | `rule`       |
 | 
						|
| `fa`     | `rule`       |
 | 
						|
| `fr`     | `rule`       |
 | 
						|
| `it`     | `pos_lookup` |
 | 
						|
| `mk`     | `rule`       |
 | 
						|
| `nb`     | `rule`       |
 | 
						|
| `nl`     | `rule`       |
 | 
						|
| `pl`     | `pos_lookup` |
 | 
						|
| `ru`     | `pymorphy2`  |
 | 
						|
| `sv`     | `rule`       |
 | 
						|
| `uk`     | `pymorphy2`  |
 | 
						|
 | 
						|
```python
 | 
						|
%%GITHUB_SPACY/spacy/pipeline/lemmatizer.py
 | 
						|
```
 | 
						|
 | 
						|
## Lemmatizer.\_\_init\_\_ {#init tag="method"}
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> # Construction via add_pipe with default model
 | 
						|
> lemmatizer = nlp.add_pipe("lemmatizer")
 | 
						|
>
 | 
						|
> # Construction via add_pipe with custom settings
 | 
						|
> config = {"mode": "rule", "overwrite": True}
 | 
						|
> lemmatizer = nlp.add_pipe("lemmatizer", config=config)
 | 
						|
> ```
 | 
						|
 | 
						|
Create a new pipeline instance. In your application, you would normally use a
 | 
						|
shortcut for this and instantiate the component using its string name and
 | 
						|
[`nlp.add_pipe`](/api/language#add_pipe).
 | 
						|
 | 
						|
| Name           | Description                                                                                         |
 | 
						|
| -------------- | --------------------------------------------------------------------------------------------------- |
 | 
						|
| `vocab`        | The shared vocabulary. ~~Vocab~~                                                                    |
 | 
						|
| `model`        | **Not yet implemented:** The model to use. ~~Model~~                                                |
 | 
						|
| `name`         | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
 | 
						|
| _keyword-only_ |                                                                                                     |
 | 
						|
| mode           | The lemmatizer mode, e.g. `"lookup"` or `"rule"`. Defaults to `"lookup"`. ~~str~~                   |
 | 
						|
| overwrite      | Whether to overwrite existing lemmas. ~~bool~                                                       |
 | 
						|
 | 
						|
## Lemmatizer.\_\_call\_\_ {#call tag="method"}
 | 
						|
 | 
						|
Apply the pipe to one document. The document is modified in place, and returned.
 | 
						|
This usually happens under the hood when the `nlp` object is called on a text
 | 
						|
and all pipeline components are applied to the `Doc` in order.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> doc = nlp("This is a sentence.")
 | 
						|
> lemmatizer = nlp.add_pipe("lemmatizer")
 | 
						|
> # This usually happens under the hood
 | 
						|
> processed = lemmatizer(doc)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Description                      |
 | 
						|
| ----------- | -------------------------------- |
 | 
						|
| `doc`       | The document to process. ~~Doc~~ |
 | 
						|
| **RETURNS** | The processed document. ~~Doc~~  |
 | 
						|
 | 
						|
## Lemmatizer.pipe {#pipe tag="method"}
 | 
						|
 | 
						|
Apply the pipe to a stream of documents. This usually happens under the hood
 | 
						|
when the `nlp` object is called on a text and all pipeline components are
 | 
						|
applied to the `Doc` in order.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> lemmatizer = nlp.add_pipe("lemmatizer")
 | 
						|
> for doc in lemmatizer.pipe(docs, batch_size=50):
 | 
						|
>     pass
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                   |
 | 
						|
| -------------- | ------------------------------------------------------------- |
 | 
						|
| `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | 
						|
| _keyword-only_ |                                                               |
 | 
						|
| `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | 
						|
| **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | 
						|
 | 
						|
## Lemmatizer.initialize {#initialize tag="method"}
 | 
						|
 | 
						|
Initialize the lemmatizer and load any data resources. This method is typically
 | 
						|
called by [`Language.initialize`](/api/language#initialize) and lets you
 | 
						|
customize arguments it receives via the
 | 
						|
[`[initialize.components]`](/api/data-formats#config-initialize) block in the
 | 
						|
config. The loading only happens during initialization, typically before
 | 
						|
training. At runtime, all data is loaded from disk.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> lemmatizer = nlp.add_pipe("lemmatizer")
 | 
						|
> lemmatizer.initialize(lookups=lookups)
 | 
						|
> ```
 | 
						|
>
 | 
						|
> ```ini
 | 
						|
> ### config.cfg
 | 
						|
> [initialize.components.lemmatizer]
 | 
						|
>
 | 
						|
> [initialize.components.lemmatizer.lookups]
 | 
						|
> @misc = "load_my_lookups.v1"
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                                                                                                                                                                                                                                         |
 | 
						|
| -------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Defaults to `None`. ~~Optional[Callable[[], Iterable[Example]]]~~                                                                                                                 |
 | 
						|
| _keyword-only_ |                                                                                                                                                                                                                                                                                     |
 | 
						|
| `nlp`          | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                                                                                                                                                                |
 | 
						|
| `lookups`      | The lookups object containing the tables such as `"lemma_rules"`, `"lemma_index"`, `"lemma_exc"` and `"lemma_lookup"`. If `None`, default tables are loaded from [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data). Defaults to `None`. ~~Optional[Lookups]~~ |
 | 
						|
 | 
						|
## Lemmatizer.lookup_lemmatize {#lookup_lemmatize tag="method"}
 | 
						|
 | 
						|
Lemmatize a token using a lookup-based approach. If no lemma is found, the
 | 
						|
original string is returned.
 | 
						|
 | 
						|
| Name        | Description                                         |
 | 
						|
| ----------- | --------------------------------------------------- |
 | 
						|
| `token`     | The token to lemmatize. ~~Token~~                   |
 | 
						|
| **RETURNS** | A list containing one or more lemmas. ~~List[str]~~ |
 | 
						|
 | 
						|
## Lemmatizer.rule_lemmatize {#rule_lemmatize tag="method"}
 | 
						|
 | 
						|
Lemmatize a token using a rule-based approach. Typically relies on POS tags.
 | 
						|
 | 
						|
| Name        | Description                                         |
 | 
						|
| ----------- | --------------------------------------------------- |
 | 
						|
| `token`     | The token to lemmatize. ~~Token~~                   |
 | 
						|
| **RETURNS** | A list containing one or more lemmas. ~~List[str]~~ |
 | 
						|
 | 
						|
## Lemmatizer.is_base_form {#is_base_form tag="method"}
 | 
						|
 | 
						|
Check whether we're dealing with an uninflected paradigm, so we can avoid
 | 
						|
lemmatization entirely.
 | 
						|
 | 
						|
| Name        | Description                                                                                                      |
 | 
						|
| ----------- | ---------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `token`     | The token to analyze. ~~Token~~                                                                                  |
 | 
						|
| **RETURNS** | Whether the token's attributes (e.g., part-of-speech tag, morphological features) describe a base form. ~~bool~~ |
 | 
						|
 | 
						|
## Lemmatizer.get_lookups_config {#get_lookups_config tag="classmethod"}
 | 
						|
 | 
						|
Returns the lookups configuration settings for a given mode for use in
 | 
						|
[`Lemmatizer.load_lookups`](/api/lemmatizer#load_lookups).
 | 
						|
 | 
						|
| Name        | Description                                                                            |
 | 
						|
| ----------- | -------------------------------------------------------------------------------------- |
 | 
						|
| `mode`      | The lemmatizer mode. ~~str~~                                                           |
 | 
						|
| **RETURNS** | The required table names and the optional table names. ~~Tuple[List[str], List[str]]~~ |
 | 
						|
 | 
						|
## Lemmatizer.to_disk {#to_disk tag="method"}
 | 
						|
 | 
						|
Serialize the pipe to disk.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> lemmatizer = nlp.add_pipe("lemmatizer")
 | 
						|
> lemmatizer.to_disk("/path/to/lemmatizer")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                                                                                                |
 | 
						|
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | 
						|
| `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | 
						|
| _keyword-only_ |                                                                                                                                            |
 | 
						|
| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | 
						|
 | 
						|
## Lemmatizer.from_disk {#from_disk tag="method"}
 | 
						|
 | 
						|
Load the pipe from disk. Modifies the object in place and returns it.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> lemmatizer = nlp.add_pipe("lemmatizer")
 | 
						|
> lemmatizer.from_disk("/path/to/lemmatizer")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                                                     |
 | 
						|
| -------------- | ----------------------------------------------------------------------------------------------- |
 | 
						|
| `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | 
						|
| _keyword-only_ |                                                                                                 |
 | 
						|
| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | 
						|
| **RETURNS**    | The modified `Lemmatizer` object. ~~Lemmatizer~~                                                |
 | 
						|
 | 
						|
## Lemmatizer.to_bytes {#to_bytes tag="method"}
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> lemmatizer = nlp.add_pipe("lemmatizer")
 | 
						|
> lemmatizer_bytes = lemmatizer.to_bytes()
 | 
						|
> ```
 | 
						|
 | 
						|
Serialize the pipe to a bytestring.
 | 
						|
 | 
						|
| Name           | Description                                                                                 |
 | 
						|
| -------------- | ------------------------------------------------------------------------------------------- |
 | 
						|
| _keyword-only_ |                                                                                             |
 | 
						|
| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | 
						|
| **RETURNS**    | The serialized form of the `Lemmatizer` object. ~~bytes~~                                   |
 | 
						|
 | 
						|
## Lemmatizer.from_bytes {#from_bytes tag="method"}
 | 
						|
 | 
						|
Load the pipe from a bytestring. Modifies the object in place and returns it.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> lemmatizer_bytes = lemmatizer.to_bytes()
 | 
						|
> lemmatizer = nlp.add_pipe("lemmatizer")
 | 
						|
> lemmatizer.from_bytes(lemmatizer_bytes)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                                                 |
 | 
						|
| -------------- | ------------------------------------------------------------------------------------------- |
 | 
						|
| `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | 
						|
| _keyword-only_ |                                                                                             |
 | 
						|
| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | 
						|
| **RETURNS**    | The `Lemmatizer` object. ~~Lemmatizer~~                                                     |
 | 
						|
 | 
						|
## Attributes {#attributes}
 | 
						|
 | 
						|
| Name      | Description                                 |
 | 
						|
| --------- | ------------------------------------------- |
 | 
						|
| `vocab`   | The shared [`Vocab`](/api/vocab). ~~Vocab~~ |
 | 
						|
| `lookups` | The lookups object. ~~Lookups~~             |
 | 
						|
| `mode`    | The lemmatizer mode. ~~str~~                |
 | 
						|
 | 
						|
## Serialization fields {#serialization-fields}
 | 
						|
 | 
						|
During serialization, spaCy will export several data fields used to restore
 | 
						|
different aspects of the object. If needed, you can exclude them from
 | 
						|
serialization by passing in the string names via the `exclude` argument.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> data = lemmatizer.to_disk("/path", exclude=["vocab"])
 | 
						|
> ```
 | 
						|
 | 
						|
| Name      | Description                                          |
 | 
						|
| --------- | ---------------------------------------------------- |
 | 
						|
| `vocab`   | The shared [`Vocab`](/api/vocab).                    |
 | 
						|
| `lookups` | The lookups. You usually don't want to exclude this. |
 |