mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
371 lines
18 KiB
Markdown
371 lines
18 KiB
Markdown
---
|
|
title: Morphologizer
|
|
tag: class
|
|
source: spacy/pipeline/morphologizer.pyx
|
|
new: 3
|
|
teaser: 'Pipeline component for predicting morphological features'
|
|
api_base_class: /api/tagger
|
|
api_string_name: morphologizer
|
|
api_trainable: true
|
|
---
|
|
|
|
A trainable pipeline component to predict morphological features and
|
|
coarse-grained POS tags following the Universal Dependencies
|
|
[UPOS](https://universaldependencies.org/u/pos/index.html) and
|
|
[FEATS](https://universaldependencies.org/format.html#morphological-annotation)
|
|
annotation guidelines.
|
|
|
|
## Config and implementation {#config}
|
|
|
|
The default config is defined by the pipeline component factory and describes
|
|
how the component should be configured. You can override its settings via the
|
|
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
|
[`config.cfg` for training](/usage/training#config). See the
|
|
[model architectures](/api/architectures) documentation for details on the
|
|
architectures and their arguments and hyperparameters.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.pipeline.morphologizer import DEFAULT_MORPH_MODEL
|
|
> config = {"model": DEFAULT_MORPH_MODEL}
|
|
> nlp.add_pipe("morphologizer", config=config)
|
|
> ```
|
|
|
|
| Setting | Type | Description | Default |
|
|
| ------- | ------------------------------------------ | ----------------- | ----------------------------------- |
|
|
| `model` | [`Model`](https://thinc.ai/docs/api-model) | The model to use. | [Tagger](/api/architectures#Tagger) |
|
|
|
|
```python
|
|
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/morphologizer.pyx
|
|
```
|
|
|
|
## Morphologizer.\_\_init\_\_ {#init tag="method"}
|
|
|
|
Initialize the morphologizer.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> # Construction via add_pipe with default model
|
|
> morphologizer = nlp.add_pipe("morphologizer")
|
|
>
|
|
> # Construction via create_pipe with custom model
|
|
> config = {"model": {"@architectures": "my_morphologizer"}}
|
|
> morphologizer = nlp.add_pipe("morphologizer", config=config)
|
|
>
|
|
> # Construction from class
|
|
> from spacy.pipeline import Morphologizer
|
|
> morphologizer = Morphologizer(nlp.vocab, model)
|
|
> ```
|
|
|
|
Create a new pipeline instance. In your application, you would normally use a
|
|
shortcut for this and instantiate the component using its string name and
|
|
[`nlp.add_pipe`](/api/language#add_pipe).
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | ------- | ------------------------------------------------------------------------------------------- |
|
|
| `vocab` | `Vocab` | The shared vocabulary. |
|
|
| `model` | `Model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. |
|
|
| `name` | str | String name of the component instance. Used to add entries to the `losses` during training. |
|
|
| _keyword-only_ | | |
|
|
| `labels_morph` | dict | <!-- TODO: --> |
|
|
| `labels_pos` | dict | <!-- TODO: --> |
|
|
|
|
## Morphologizer.\_\_call\_\_ {#call tag="method"}
|
|
|
|
Apply the pipe to one document. The document is modified in place, and returned.
|
|
This usually happens under the hood when the `nlp` object is called on a text
|
|
and all pipeline components are applied to the `Doc` in order. Both
|
|
[`__call__`](/api/morphologizer#call) and [`pipe`](/api/morphologizer#pipe)
|
|
delegate to the [`predict`](/api/morphologizer#predict) and
|
|
[`set_annotations`](/api/morphologizer#set_annotations) methods.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> doc = nlp("This is a sentence.")
|
|
> morphologizer = nlp.add_pipe("morphologizer")
|
|
> # This usually happens under the hood
|
|
> processed = morphologizer(doc)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ----- | ------------------------ |
|
|
| `doc` | `Doc` | The document to process. |
|
|
| **RETURNS** | `Doc` | The processed document. |
|
|
|
|
## Morphologizer.pipe {#pipe tag="method"}
|
|
|
|
Apply the pipe to a stream of documents. This usually happens under the hood
|
|
when the `nlp` object is called on a text and all pipeline components are
|
|
applied to the `Doc` in order. Both [`__call__`](/api/morphologizer#call) and
|
|
[`pipe`](/api/morphologizer#pipe) delegate to the
|
|
[`predict`](/api/morphologizer#predict) and
|
|
[`set_annotations`](/api/morphologizer#set_annotations) methods.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> morphologizer = nlp.add_pipe("morphologizer")
|
|
> for doc in morphologizer.pipe(docs, batch_size=50):
|
|
> pass
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | --------------- | ------------------------------------------------------ |
|
|
| `stream` | `Iterable[Doc]` | A stream of documents. |
|
|
| _keyword-only_ | | |
|
|
| `batch_size` | int | The number of texts to buffer. Defaults to `128`. |
|
|
| **YIELDS** | `Doc` | Processed documents in the order of the original text. |
|
|
|
|
## Morphologizer.begin_training {#begin_training tag="method"}
|
|
|
|
Initialize the pipe for training, using data examples if available. Return an
|
|
[`Optimizer`](https://thinc.ai/docs/api-optimizers) object.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> morphologizer = nlp.add_pipe("morphologizer")
|
|
> nlp.pipeline.append(morphologizer)
|
|
> optimizer = morphologizer.begin_training(pipeline=nlp.pipeline)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------------- | --------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------- |
|
|
| `get_examples` | `Callable[[], Iterable[Example]]` | Optional function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. |
|
|
| _keyword-only_ | | |
|
|
| `pipeline` | `List[Tuple[str, Callable]]` | Optional list of pipeline components that this component is part of. |
|
|
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | An optional optimizer. Will be created via [`create_optimizer`](/api/sentencerecognizer#create_optimizer) if not set. |
|
|
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
|
|
|
## Morphologizer.predict {#predict tag="method"}
|
|
|
|
Apply the pipeline's model to a batch of docs, without modifying them.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> morphologizer = nlp.add_pipe("morphologizer")
|
|
> scores = morphologizer.predict([doc1, doc2])
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | --------------- | ----------------------------------------- |
|
|
| `docs` | `Iterable[Doc]` | The documents to predict. |
|
|
| **RETURNS** | - | The model's prediction for each document. |
|
|
|
|
## Morphologizer.set_annotations {#set_annotations tag="method"}
|
|
|
|
Modify a batch of documents, using pre-computed scores.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> morphologizer = nlp.add_pipe("morphologizer")
|
|
> scores = morphologizer.predict([doc1, doc2])
|
|
> morphologizer.set_annotations([doc1, doc2], scores)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------- | --------------- | ------------------------------------------------------- |
|
|
| `docs` | `Iterable[Doc]` | The documents to modify. |
|
|
| `scores` | - | The scores to set, produced by `Morphologizer.predict`. |
|
|
|
|
## Morphologizer.update {#update tag="method"}
|
|
|
|
Learn from a batch of documents and gold-standard information, updating the
|
|
pipe's model. Delegates to [`predict`](/api/morphologizer#predict) and
|
|
[`get_loss`](/api/morphologizer#get_loss).
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> morphologizer = nlp.add_pipe("morphologizer")
|
|
> optimizer = nlp.begin_training()
|
|
> losses = morphologizer.update(examples, sgd=optimizer)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------------- | --------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------ |
|
|
| `examples` | `Iterable[Example]` | A batch of [`Example`](/api/example) objects to learn from. |
|
|
| _keyword-only_ | | |
|
|
| `drop` | float | The dropout rate. |
|
|
| `set_annotations` | bool | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/sentencerecognizer#set_annotations). |
|
|
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
|
| `losses` | `Dict[str, float]` | Optional record of the loss during training. The value keyed by the model's name is updated. |
|
|
| **RETURNS** | `Dict[str, float]` | The updated `losses` dictionary. |
|
|
|
|
## Morphologizer.get_loss {#get_loss tag="method"}
|
|
|
|
Find the loss and gradient of loss for the batch of documents and their
|
|
predicted scores.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> morphologizer = nlp.add_pipe("morphologizer")
|
|
> scores = morphologizer.predict([eg.predicted for eg in examples])
|
|
> loss, d_loss = morphologizer.get_loss(examples, scores)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | --------------------- | --------------------------------------------------- |
|
|
| `examples` | `Iterable[Example]` | The batch of examples. |
|
|
| `scores` | - | Scores representing the model's predictions. |
|
|
| **RETURNS** | `Tuple[float, float]` | The loss and the gradient, i.e. `(loss, gradient)`. |
|
|
|
|
## Morphologizer.create_optimizer {#create_optimizer tag="method"}
|
|
|
|
Create an optimizer for the pipeline component.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> morphologizer = nlp.add_pipe("morphologizer")
|
|
> optimizer = morphologizer.create_optimizer()
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | --------------------------------------------------- | -------------- |
|
|
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
|
|
|
## Morphologizer.use_params {#use_params tag="method, contextmanager"}
|
|
|
|
Modify the pipe's model, to use the given parameter values. At the end of the
|
|
context, the original parameters are restored.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> morphologizer = nlp.add_pipe("morphologizer")
|
|
> with morphologizer.use_params(optimizer.averages):
|
|
> morphologizer.to_disk("/best_model")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------- | ---- | ----------------------------------------- |
|
|
| `params` | dict | The parameter values to use in the model. |
|
|
|
|
## Morphologizer.add_label {#add_label tag="method"}
|
|
|
|
Add a new label to the pipe. If the `Morphologizer` should set annotations for
|
|
both `pos` and `morph`, the label should include the UPOS as the feature `POS`.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> morphologizer = nlp.add_pipe("morphologizer")
|
|
> morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ---- | --------------------------------------------------- |
|
|
| `label` | str | The label to add. |
|
|
| **RETURNS** | int | `0` if the label is already present, otherwise `1`. |
|
|
|
|
## Morphologizer.to_disk {#to_disk tag="method"}
|
|
|
|
Serialize the pipe to disk.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> morphologizer = nlp.add_pipe("morphologizer")
|
|
> morphologizer.to_disk("/path/to/morphologizer")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| --------- | --------------- | --------------------------------------------------------------------------------------------------------------------- |
|
|
| `path` | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
|
|
## Morphologizer.from_disk {#from_disk tag="method"}
|
|
|
|
Load the pipe from disk. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> morphologizer = nlp.add_pipe("morphologizer")
|
|
> morphologizer.from_disk("/path/to/morphologizer")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | --------------- | -------------------------------------------------------------------------- |
|
|
| `path` | str / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | `Morphologizer` | The modified `Morphologizer` object. |
|
|
|
|
## Morphologizer.to_bytes {#to_bytes tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> morphologizer = nlp.add_pipe("morphologizer")
|
|
> morphologizer_bytes = morphologizer.to_bytes()
|
|
> ```
|
|
|
|
Serialize the pipe to a bytestring.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | --------------- | ------------------------------------------------------------------------- |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | bytes | The serialized form of the `Morphologizer` object. |
|
|
|
|
## Morphologizer.from_bytes {#from_bytes tag="method"}
|
|
|
|
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> morphologizer_bytes = morphologizer.to_bytes()
|
|
> morphologizer = nlp.add_pipe("morphologizer")
|
|
> morphologizer.from_bytes(morphologizer_bytes)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ------------ | --------------- | ------------------------------------------------------------------------- |
|
|
| `bytes_data` | bytes | The data to load from. |
|
|
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | `Morphologizer` | The `Morphologizer` object. |
|
|
|
|
## Morphologizer.labels {#labels tag="property"}
|
|
|
|
The labels currently added to the component in Universal Dependencies
|
|
[FEATS format](https://universaldependencies.org/format.html#morphological-annotation).
|
|
Note that even for a blank component, this will always include the internal
|
|
empty label `_`. If POS features are used, the labels will include the
|
|
coarse-grained POS as the feature `POS`.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin")
|
|
> assert "Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin" in morphologizer.labels
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ----- | ---------------------------------- |
|
|
| **RETURNS** | tuple | The labels added to the component. |
|
|
|
|
## Serialization fields {#serialization-fields}
|
|
|
|
During serialization, spaCy will export several data fields used to restore
|
|
different aspects of the object. If needed, you can exclude them from
|
|
serialization by passing in the string names via the `exclude` argument.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> data = morphologizer.to_disk("/path", exclude=["vocab"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ------- | -------------------------------------------------------------- |
|
|
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
|
| `cfg` | The config file. You usually don't want to exclude this. |
|
|
| `model` | The binary model data. You usually don't want to exclude this. |
|