mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Use Vectors.shape rather than Vectors.data.shape * Use Vectors.size rather than Vectors.data.size * Add Vectors.to_ops to move data between different ops * Add documentation for Vector.to_ops
		
			
				
	
	
		
			552 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			552 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
# cython: profile=True
 | 
						|
from libc.string cimport memcpy
 | 
						|
 | 
						|
import srsly
 | 
						|
from thinc.api import get_array_module, get_current_ops
 | 
						|
import functools
 | 
						|
 | 
						|
from .lexeme cimport EMPTY_LEXEME, OOV_RANK
 | 
						|
from .lexeme cimport Lexeme
 | 
						|
from .typedefs cimport attr_t
 | 
						|
from .tokens.token cimport Token
 | 
						|
from .attrs cimport LANG, ORTH
 | 
						|
 | 
						|
from .compat import copy_reg
 | 
						|
from .errors import Errors
 | 
						|
from .attrs import intify_attrs, NORM, IS_STOP
 | 
						|
from .vectors import Vectors, Mode as VectorsMode
 | 
						|
from .util import registry
 | 
						|
from .lookups import Lookups
 | 
						|
from . import util
 | 
						|
from .lang.norm_exceptions import BASE_NORMS
 | 
						|
from .lang.lex_attrs import LEX_ATTRS, is_stop, get_lang
 | 
						|
 | 
						|
 | 
						|
def create_vocab(lang, defaults, vectors_name=None):
 | 
						|
    # If the spacy-lookups-data package is installed, we pre-populate the lookups
 | 
						|
    # with lexeme data, if available
 | 
						|
    lex_attrs = {**LEX_ATTRS, **defaults.lex_attr_getters}
 | 
						|
    # This is messy, but it's the minimal working fix to Issue #639.
 | 
						|
    lex_attrs[IS_STOP] = functools.partial(is_stop, stops=defaults.stop_words)
 | 
						|
    # Ensure that getter can be pickled
 | 
						|
    lex_attrs[LANG] = functools.partial(get_lang, lang=lang)
 | 
						|
    lex_attrs[NORM] = util.add_lookups(
 | 
						|
        lex_attrs.get(NORM, LEX_ATTRS[NORM]),
 | 
						|
        BASE_NORMS,
 | 
						|
    )
 | 
						|
    return Vocab(
 | 
						|
        lex_attr_getters=lex_attrs,
 | 
						|
        writing_system=defaults.writing_system,
 | 
						|
        get_noun_chunks=defaults.syntax_iterators.get("noun_chunks"),
 | 
						|
        vectors_name=vectors_name,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
cdef class Vocab:
 | 
						|
    """A look-up table that allows you to access `Lexeme` objects. The `Vocab`
 | 
						|
    instance also provides access to the `StringStore`, and owns underlying
 | 
						|
    C-data that is shared between `Doc` objects.
 | 
						|
 | 
						|
    DOCS: https://spacy.io/api/vocab
 | 
						|
    """
 | 
						|
    def __init__(self, lex_attr_getters=None, strings=tuple(), lookups=None,
 | 
						|
                 oov_prob=-20., vectors_name=None, writing_system={},
 | 
						|
                 get_noun_chunks=None, **deprecated_kwargs):
 | 
						|
        """Create the vocabulary.
 | 
						|
 | 
						|
        lex_attr_getters (dict): A dictionary mapping attribute IDs to
 | 
						|
            functions to compute them. Defaults to `None`.
 | 
						|
        strings (StringStore): StringStore that maps strings to integers, and
 | 
						|
            vice versa.
 | 
						|
        lookups (Lookups): Container for large lookup tables and dictionaries.
 | 
						|
        oov_prob (float): Default OOV probability.
 | 
						|
        vectors_name (str): Optional name to identify the vectors table.
 | 
						|
        get_noun_chunks (Optional[Callable[[Union[Doc, Span], Iterator[Tuple[int, int, int]]]]]):
 | 
						|
            A function that yields base noun phrases used for Doc.noun_chunks.
 | 
						|
        """
 | 
						|
        lex_attr_getters = lex_attr_getters if lex_attr_getters is not None else {}
 | 
						|
        if lookups in (None, True, False):
 | 
						|
            lookups = Lookups()
 | 
						|
        self.cfg = {'oov_prob': oov_prob}
 | 
						|
        self.mem = Pool()
 | 
						|
        self._by_orth = PreshMap()
 | 
						|
        self.strings = StringStore()
 | 
						|
        self.length = 0
 | 
						|
        if strings:
 | 
						|
            for string in strings:
 | 
						|
                _ = self[string]
 | 
						|
        self.lex_attr_getters = lex_attr_getters
 | 
						|
        self.morphology = Morphology(self.strings)
 | 
						|
        self.vectors = Vectors(strings=self.strings, name=vectors_name)
 | 
						|
        self.lookups = lookups
 | 
						|
        self.writing_system = writing_system
 | 
						|
        self.get_noun_chunks = get_noun_chunks
 | 
						|
 | 
						|
    property vectors:
 | 
						|
        def __get__(self):
 | 
						|
            return self._vectors
 | 
						|
 | 
						|
        def __set__(self, vectors):
 | 
						|
            for s in vectors.strings:
 | 
						|
                self.strings.add(s)
 | 
						|
            self._vectors = vectors
 | 
						|
            self._vectors.strings = self.strings
 | 
						|
 | 
						|
    @property
 | 
						|
    def lang(self):
 | 
						|
        langfunc = None
 | 
						|
        if self.lex_attr_getters:
 | 
						|
            langfunc = self.lex_attr_getters.get(LANG, None)
 | 
						|
        return langfunc("_") if langfunc else ""
 | 
						|
 | 
						|
    def __len__(self):
 | 
						|
        """The current number of lexemes stored.
 | 
						|
 | 
						|
        RETURNS (int): The current number of lexemes stored.
 | 
						|
        """
 | 
						|
        return self.length
 | 
						|
 | 
						|
    def add_flag(self, flag_getter, int flag_id=-1):
 | 
						|
        """Set a new boolean flag to words in the vocabulary.
 | 
						|
 | 
						|
        The flag_getter function will be called over the words currently in the
 | 
						|
        vocab, and then applied to new words as they occur. You'll then be able
 | 
						|
        to access the flag value on each token using token.check_flag(flag_id).
 | 
						|
        See also: `Lexeme.set_flag`, `Lexeme.check_flag`, `Token.set_flag`,
 | 
						|
        `Token.check_flag`.
 | 
						|
 | 
						|
        flag_getter (callable): A function `f(str) -> bool`, to get the
 | 
						|
            flag value.
 | 
						|
        flag_id (int): An integer between 1 and 63 (inclusive), specifying
 | 
						|
            the bit at which the flag will be stored. If -1, the lowest
 | 
						|
            available bit will be chosen.
 | 
						|
        RETURNS (int): The integer ID by which the flag value can be checked.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/vocab#add_flag
 | 
						|
        """
 | 
						|
        if flag_id == -1:
 | 
						|
            for bit in range(1, 64):
 | 
						|
                if bit not in self.lex_attr_getters:
 | 
						|
                    flag_id = bit
 | 
						|
                    break
 | 
						|
            else:
 | 
						|
                raise ValueError(Errors.E062)
 | 
						|
        elif flag_id >= 64 or flag_id < 1:
 | 
						|
            raise ValueError(Errors.E063.format(value=flag_id))
 | 
						|
        for lex in self:
 | 
						|
            lex.set_flag(flag_id, flag_getter(lex.orth_))
 | 
						|
        self.lex_attr_getters[flag_id] = flag_getter
 | 
						|
        return flag_id
 | 
						|
 | 
						|
    cdef const LexemeC* get(self, Pool mem, str string) except NULL:
 | 
						|
        """Get a pointer to a `LexemeC` from the lexicon, creating a new
 | 
						|
        `Lexeme` if necessary using memory acquired from the given pool. If the
 | 
						|
        pool is the lexicon's own memory, the lexeme is saved in the lexicon.
 | 
						|
        """
 | 
						|
        if string == "":
 | 
						|
            return &EMPTY_LEXEME
 | 
						|
        cdef LexemeC* lex
 | 
						|
        cdef hash_t key = self.strings[string]
 | 
						|
        lex = <LexemeC*>self._by_orth.get(key)
 | 
						|
        cdef size_t addr
 | 
						|
        if lex != NULL:
 | 
						|
            assert lex.orth in self.strings
 | 
						|
            if lex.orth != key:
 | 
						|
                raise KeyError(Errors.E064.format(string=lex.orth,
 | 
						|
                                                  orth=key, orth_id=string))
 | 
						|
            return lex
 | 
						|
        else:
 | 
						|
            return self._new_lexeme(mem, string)
 | 
						|
 | 
						|
    cdef const LexemeC* get_by_orth(self, Pool mem, attr_t orth) except NULL:
 | 
						|
        """Get a pointer to a `LexemeC` from the lexicon, creating a new
 | 
						|
        `Lexeme` if necessary using memory acquired from the given pool. If the
 | 
						|
        pool is the lexicon's own memory, the lexeme is saved in the lexicon.
 | 
						|
        """
 | 
						|
        if orth == 0:
 | 
						|
            return &EMPTY_LEXEME
 | 
						|
        cdef LexemeC* lex
 | 
						|
        lex = <LexemeC*>self._by_orth.get(orth)
 | 
						|
        if lex != NULL:
 | 
						|
            return lex
 | 
						|
        else:
 | 
						|
            return self._new_lexeme(mem, self.strings[orth])
 | 
						|
 | 
						|
    cdef const LexemeC* _new_lexeme(self, Pool mem, str string) except NULL:
 | 
						|
        # I think this heuristic is bad, and the Vocab should always
 | 
						|
        # own the lexemes. It avoids weird bugs this way, as it's how the thing
 | 
						|
        # was originally supposed to work. The best solution to the growing
 | 
						|
        # memory use is to periodically reset the vocab, which is an action
 | 
						|
        # that should be up to the user to do (so we don't need to keep track
 | 
						|
        # of the doc ownership).
 | 
						|
        # TODO: Change the C API so that the mem isn't passed in here.
 | 
						|
        mem = self.mem
 | 
						|
        #if len(string) < 3 or self.length < 10000:
 | 
						|
        #    mem = self.mem
 | 
						|
        cdef bint is_oov = mem is not self.mem
 | 
						|
        lex = <LexemeC*>mem.alloc(1, sizeof(LexemeC))
 | 
						|
        lex.orth = self.strings.add(string)
 | 
						|
        lex.length = len(string)
 | 
						|
        if self.vectors is not None:
 | 
						|
            lex.id = self.vectors.key2row.get(lex.orth, OOV_RANK)
 | 
						|
        else:
 | 
						|
            lex.id = OOV_RANK
 | 
						|
        if self.lex_attr_getters is not None:
 | 
						|
            for attr, func in self.lex_attr_getters.items():
 | 
						|
                value = func(string)
 | 
						|
                if isinstance(value, str):
 | 
						|
                    value = self.strings.add(value)
 | 
						|
                if value is not None:
 | 
						|
                    Lexeme.set_struct_attr(lex, attr, value)
 | 
						|
        if not is_oov:
 | 
						|
            self._add_lex_to_vocab(lex.orth, lex)
 | 
						|
        if lex == NULL:
 | 
						|
            raise ValueError(Errors.E085.format(string=string))
 | 
						|
        return lex
 | 
						|
 | 
						|
    cdef int _add_lex_to_vocab(self, hash_t key, const LexemeC* lex) except -1:
 | 
						|
        self._by_orth.set(lex.orth, <void*>lex)
 | 
						|
        self.length += 1
 | 
						|
 | 
						|
    def __contains__(self, key):
 | 
						|
        """Check whether the string or int key has an entry in the vocabulary.
 | 
						|
 | 
						|
        string (str): The ID string.
 | 
						|
        RETURNS (bool) Whether the string has an entry in the vocabulary.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/vocab#contains
 | 
						|
        """
 | 
						|
        cdef hash_t int_key
 | 
						|
        if isinstance(key, bytes):
 | 
						|
            int_key = self.strings[key.decode("utf8")]
 | 
						|
        elif isinstance(key, str):
 | 
						|
            int_key = self.strings[key]
 | 
						|
        else:
 | 
						|
            int_key = key
 | 
						|
        lex = self._by_orth.get(int_key)
 | 
						|
        return lex is not NULL
 | 
						|
 | 
						|
    def __iter__(self):
 | 
						|
        """Iterate over the lexemes in the vocabulary.
 | 
						|
 | 
						|
        YIELDS (Lexeme): An entry in the vocabulary.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/vocab#iter
 | 
						|
        """
 | 
						|
        cdef attr_t key
 | 
						|
        cdef size_t addr
 | 
						|
        for key, addr in self._by_orth.items():
 | 
						|
            lex = Lexeme(self, key)
 | 
						|
            yield lex
 | 
						|
 | 
						|
    def __getitem__(self, id_or_string):
 | 
						|
        """Retrieve a lexeme, given an int ID or a unicode string. If a
 | 
						|
        previously unseen unicode string is given, a new lexeme is created and
 | 
						|
        stored.
 | 
						|
 | 
						|
        id_or_string (int or str): The integer ID of a word, or its unicode
 | 
						|
            string. If `int >= Lexicon.size`, `IndexError` is raised. If
 | 
						|
            `id_or_string` is neither an int nor a unicode string, `ValueError`
 | 
						|
            is raised.
 | 
						|
        RETURNS (Lexeme): The lexeme indicated by the given ID.
 | 
						|
 | 
						|
        EXAMPLE:
 | 
						|
            >>> apple = nlp.vocab.strings["apple"]
 | 
						|
            >>> assert nlp.vocab[apple] == nlp.vocab[u"apple"]
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/vocab#getitem
 | 
						|
        """
 | 
						|
        cdef attr_t orth
 | 
						|
        if isinstance(id_or_string, str):
 | 
						|
            orth = self.strings.add(id_or_string)
 | 
						|
        else:
 | 
						|
            orth = id_or_string
 | 
						|
        return Lexeme(self, orth)
 | 
						|
 | 
						|
    cdef const TokenC* make_fused_token(self, substrings) except NULL:
 | 
						|
        cdef int i
 | 
						|
        tokens = <TokenC*>self.mem.alloc(len(substrings) + 1, sizeof(TokenC))
 | 
						|
        for i, props in enumerate(substrings):
 | 
						|
            props = intify_attrs(props, strings_map=self.strings,
 | 
						|
                                 _do_deprecated=True)
 | 
						|
            token = &tokens[i]
 | 
						|
            # Set the special tokens up to have arbitrary attributes
 | 
						|
            lex = <LexemeC*>self.get_by_orth(self.mem, props[ORTH])
 | 
						|
            token.lex = lex
 | 
						|
            for attr_id, value in props.items():
 | 
						|
                Token.set_struct_attr(token, attr_id, value)
 | 
						|
                # NORM is the only one that overlaps between the two
 | 
						|
                # (which is maybe not great?)
 | 
						|
                if attr_id != NORM:
 | 
						|
                    Lexeme.set_struct_attr(lex, attr_id, value)
 | 
						|
        return tokens
 | 
						|
 | 
						|
    @property
 | 
						|
    def vectors_length(self):
 | 
						|
        return self.vectors.shape[1]
 | 
						|
 | 
						|
    def reset_vectors(self, *, width=None, shape=None):
 | 
						|
        """Drop the current vector table. Because all vectors must be the same
 | 
						|
        width, you have to call this to change the size of the vectors.
 | 
						|
        """
 | 
						|
        if width is not None and shape is not None:
 | 
						|
            raise ValueError(Errors.E065.format(width=width, shape=shape))
 | 
						|
        elif shape is not None:
 | 
						|
            self.vectors = Vectors(strings=self.strings, shape=shape)
 | 
						|
        else:
 | 
						|
            width = width if width is not None else self.vectors.shape[1]
 | 
						|
            self.vectors = Vectors(strings=self.strings, shape=(self.vectors.shape[0], width))
 | 
						|
 | 
						|
    def prune_vectors(self, nr_row, batch_size=1024):
 | 
						|
        """Reduce the current vector table to `nr_row` unique entries. Words
 | 
						|
        mapped to the discarded vectors will be remapped to the closest vector
 | 
						|
        among those remaining.
 | 
						|
 | 
						|
        For example, suppose the original table had vectors for the words:
 | 
						|
        ['sat', 'cat', 'feline', 'reclined']. If we prune the vector table to
 | 
						|
        two rows, we would discard the vectors for 'feline' and 'reclined'.
 | 
						|
        These words would then be remapped to the closest remaining vector
 | 
						|
        -- so "feline" would have the same vector as "cat", and "reclined"
 | 
						|
        would have the same vector as "sat".
 | 
						|
 | 
						|
        The similarities are judged by cosine. The original vectors may
 | 
						|
        be large, so the cosines are calculated in minibatches, to reduce
 | 
						|
        memory usage.
 | 
						|
 | 
						|
        nr_row (int): The number of rows to keep in the vector table.
 | 
						|
        batch_size (int): Batch of vectors for calculating the similarities.
 | 
						|
            Larger batch sizes might be faster, while temporarily requiring
 | 
						|
            more memory.
 | 
						|
        RETURNS (dict): A dictionary keyed by removed words mapped to
 | 
						|
            `(string, score)` tuples, where `string` is the entry the removed
 | 
						|
            word was mapped to, and `score` the similarity score between the
 | 
						|
            two words.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/vocab#prune_vectors
 | 
						|
        """
 | 
						|
        if self.vectors.mode != VectorsMode.default:
 | 
						|
            raise ValueError(Errors.E866)
 | 
						|
        ops = get_current_ops()
 | 
						|
        xp = get_array_module(self.vectors.data)
 | 
						|
        # Make sure all vectors are in the vocab
 | 
						|
        for orth in self.vectors:
 | 
						|
            self[orth]
 | 
						|
        # Make prob negative so it sorts by rank ascending
 | 
						|
        # (key2row contains the rank)
 | 
						|
        priority = [(-lex.prob, self.vectors.key2row[lex.orth], lex.orth)
 | 
						|
                    for lex in self if lex.orth in self.vectors.key2row]
 | 
						|
        priority.sort()
 | 
						|
        indices = xp.asarray([i for (prob, i, key) in priority], dtype="uint64")
 | 
						|
        keys = xp.asarray([key for (prob, i, key) in priority], dtype="uint64")
 | 
						|
        keep = xp.ascontiguousarray(self.vectors.data[indices[:nr_row]])
 | 
						|
        toss = xp.ascontiguousarray(self.vectors.data[indices[nr_row:]])
 | 
						|
        self.vectors = Vectors(strings=self.strings, data=keep, keys=keys[:nr_row], name=self.vectors.name)
 | 
						|
        syn_keys, syn_rows, scores = self.vectors.most_similar(toss, batch_size=batch_size)
 | 
						|
        syn_keys = ops.to_numpy(syn_keys)
 | 
						|
        remap = {}
 | 
						|
        for i, key in enumerate(ops.to_numpy(keys[nr_row:])):
 | 
						|
            self.vectors.add(key, row=syn_rows[i][0])
 | 
						|
            word = self.strings[key]
 | 
						|
            synonym = self.strings[syn_keys[i][0]]
 | 
						|
            score = scores[i][0]
 | 
						|
            remap[word] = (synonym, score)
 | 
						|
        return remap
 | 
						|
 | 
						|
    def get_vector(self, orth):
 | 
						|
        """Retrieve a vector for a word in the vocabulary. Words can be looked
 | 
						|
        up by string or int ID. If no vectors data is loaded, ValueError is
 | 
						|
        raised.
 | 
						|
 | 
						|
        orth (int / unicode): The hash value of a word, or its unicode string.
 | 
						|
        RETURNS (numpy.ndarray or cupy.ndarray): A word vector. Size
 | 
						|
            and shape determined by the `vocab.vectors` instance. Usually, a
 | 
						|
            numpy ndarray of shape (300,) and dtype float32.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/vocab#get_vector
 | 
						|
        """
 | 
						|
        if isinstance(orth, str):
 | 
						|
            orth = self.strings.add(orth)
 | 
						|
        if self.has_vector(orth):
 | 
						|
            return self.vectors[orth]
 | 
						|
        xp = get_array_module(self.vectors.data)
 | 
						|
        vectors = xp.zeros((self.vectors_length,), dtype="f")
 | 
						|
        return vectors
 | 
						|
 | 
						|
    def set_vector(self, orth, vector):
 | 
						|
        """Set a vector for a word in the vocabulary. Words can be referenced
 | 
						|
        by string or int ID.
 | 
						|
 | 
						|
        orth (int / str): The word.
 | 
						|
        vector (numpy.ndarray or cupy.nadarry[ndim=1, dtype='float32']): The vector to set.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/vocab#set_vector
 | 
						|
        """
 | 
						|
        if isinstance(orth, str):
 | 
						|
            orth = self.strings.add(orth)
 | 
						|
        if self.vectors.is_full and orth not in self.vectors:
 | 
						|
            new_rows = max(100, int(self.vectors.shape[0]*1.3))
 | 
						|
            if self.vectors.shape[1] == 0:
 | 
						|
                width = vector.size
 | 
						|
            else:
 | 
						|
                width = self.vectors.shape[1]
 | 
						|
            self.vectors.resize((new_rows, width))
 | 
						|
        lex = self[orth]  # Add word to vocab if necessary
 | 
						|
        row = self.vectors.add(orth, vector=vector)
 | 
						|
        if row >= 0:
 | 
						|
            lex.rank = row
 | 
						|
 | 
						|
    def has_vector(self, orth):
 | 
						|
        """Check whether a word has a vector. Returns False if no vectors have
 | 
						|
        been loaded. Words can be looked up by string or int ID.
 | 
						|
 | 
						|
        orth (int / str): The word.
 | 
						|
        RETURNS (bool): Whether the word has a vector.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/vocab#has_vector
 | 
						|
        """
 | 
						|
        if isinstance(orth, str):
 | 
						|
            orth = self.strings.add(orth)
 | 
						|
        return orth in self.vectors
 | 
						|
 | 
						|
    property lookups:
 | 
						|
        def __get__(self):
 | 
						|
            return self._lookups
 | 
						|
 | 
						|
        def __set__(self, lookups):
 | 
						|
            self._lookups = lookups
 | 
						|
            if lookups.has_table("lexeme_norm"):
 | 
						|
                self.lex_attr_getters[NORM] = util.add_lookups(
 | 
						|
                    self.lex_attr_getters.get(NORM, LEX_ATTRS[NORM]),
 | 
						|
                    self.lookups.get_table("lexeme_norm"),
 | 
						|
                )
 | 
						|
 | 
						|
 | 
						|
    def to_disk(self, path, *, exclude=tuple()):
 | 
						|
        """Save the current state to a directory.
 | 
						|
 | 
						|
        path (str or Path): A path to a directory, which will be created if
 | 
						|
            it doesn't exist.
 | 
						|
        exclude (Iterable[str]): String names of serialization fields to exclude.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/vocab#to_disk
 | 
						|
        """
 | 
						|
        path = util.ensure_path(path)
 | 
						|
        if not path.exists():
 | 
						|
            path.mkdir()
 | 
						|
        setters = ["strings", "vectors"]
 | 
						|
        if "strings" not in exclude:
 | 
						|
            self.strings.to_disk(path / "strings.json")
 | 
						|
        if "vectors" not in "exclude":
 | 
						|
            self.vectors.to_disk(path, exclude=["strings"])
 | 
						|
        if "lookups" not in "exclude":
 | 
						|
            self.lookups.to_disk(path)
 | 
						|
 | 
						|
    def from_disk(self, path, *, exclude=tuple()):
 | 
						|
        """Loads state from a directory. Modifies the object in place and
 | 
						|
        returns it.
 | 
						|
 | 
						|
        path (str or Path): A path to a directory.
 | 
						|
        exclude (Iterable[str]): String names of serialization fields to exclude.
 | 
						|
        RETURNS (Vocab): The modified `Vocab` object.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/vocab#to_disk
 | 
						|
        """
 | 
						|
        path = util.ensure_path(path)
 | 
						|
        getters = ["strings", "vectors"]
 | 
						|
        if "strings" not in exclude:
 | 
						|
            self.strings.from_disk(path / "strings.json")  # TODO: add exclude?
 | 
						|
        if "vectors" not in exclude:
 | 
						|
            if self.vectors is not None:
 | 
						|
                self.vectors.from_disk(path, exclude=["strings"])
 | 
						|
        if "lookups" not in exclude:
 | 
						|
            self.lookups.from_disk(path)
 | 
						|
        if "lexeme_norm" in self.lookups:
 | 
						|
            self.lex_attr_getters[NORM] = util.add_lookups(
 | 
						|
                self.lex_attr_getters.get(NORM, LEX_ATTRS[NORM]), self.lookups.get_table("lexeme_norm")
 | 
						|
            )
 | 
						|
        self.length = 0
 | 
						|
        self._by_orth = PreshMap()
 | 
						|
        return self
 | 
						|
 | 
						|
    def to_bytes(self, *, exclude=tuple()):
 | 
						|
        """Serialize the current state to a binary string.
 | 
						|
 | 
						|
        exclude (Iterable[str]): String names of serialization fields to exclude.
 | 
						|
        RETURNS (bytes): The serialized form of the `Vocab` object.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/vocab#to_bytes
 | 
						|
        """
 | 
						|
        def deserialize_vectors():
 | 
						|
            if self.vectors is None:
 | 
						|
                return None
 | 
						|
            else:
 | 
						|
                return self.vectors.to_bytes(exclude=["strings"])
 | 
						|
 | 
						|
        getters = {
 | 
						|
            "strings": lambda: self.strings.to_bytes(),
 | 
						|
            "vectors": deserialize_vectors,
 | 
						|
            "lookups": lambda: self.lookups.to_bytes(),
 | 
						|
        }
 | 
						|
        return util.to_bytes(getters, exclude)
 | 
						|
 | 
						|
    def from_bytes(self, bytes_data, *, exclude=tuple()):
 | 
						|
        """Load state from a binary string.
 | 
						|
 | 
						|
        bytes_data (bytes): The data to load from.
 | 
						|
        exclude (Iterable[str]): String names of serialization fields to exclude.
 | 
						|
        RETURNS (Vocab): The `Vocab` object.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/vocab#from_bytes
 | 
						|
        """
 | 
						|
        def serialize_vectors(b):
 | 
						|
            if self.vectors is None:
 | 
						|
                return None
 | 
						|
            else:
 | 
						|
                return self.vectors.from_bytes(b, exclude=["strings"])
 | 
						|
 | 
						|
        setters = {
 | 
						|
            "strings": lambda b: self.strings.from_bytes(b),
 | 
						|
            "vectors": lambda b: serialize_vectors(b),
 | 
						|
            "lookups": lambda b: self.lookups.from_bytes(b),
 | 
						|
        }
 | 
						|
        util.from_bytes(bytes_data, setters, exclude)
 | 
						|
        if "lexeme_norm" in self.lookups:
 | 
						|
            self.lex_attr_getters[NORM] = util.add_lookups(
 | 
						|
                self.lex_attr_getters.get(NORM, LEX_ATTRS[NORM]), self.lookups.get_table("lexeme_norm")
 | 
						|
            )
 | 
						|
        self.length = 0
 | 
						|
        self._by_orth = PreshMap()
 | 
						|
        return self
 | 
						|
 | 
						|
    def _reset_cache(self, keys, strings):
 | 
						|
        # I'm not sure this made sense. Disable it for now.
 | 
						|
        raise NotImplementedError
 | 
						|
 | 
						|
 | 
						|
def pickle_vocab(vocab):
 | 
						|
    sstore = vocab.strings
 | 
						|
    vectors = vocab.vectors
 | 
						|
    morph = vocab.morphology
 | 
						|
    _unused_object = vocab._unused_object
 | 
						|
    lex_attr_getters = srsly.pickle_dumps(vocab.lex_attr_getters)
 | 
						|
    lookups = vocab.lookups
 | 
						|
    get_noun_chunks = vocab.get_noun_chunks
 | 
						|
    return (unpickle_vocab,
 | 
						|
            (sstore, vectors, morph, _unused_object, lex_attr_getters, lookups, get_noun_chunks))
 | 
						|
 | 
						|
 | 
						|
def unpickle_vocab(sstore, vectors, morphology, _unused_object,
 | 
						|
                   lex_attr_getters, lookups, get_noun_chunks):
 | 
						|
    cdef Vocab vocab = Vocab()
 | 
						|
    vocab.vectors = vectors
 | 
						|
    vocab.strings = sstore
 | 
						|
    vocab.morphology = morphology
 | 
						|
    vocab._unused_object = _unused_object
 | 
						|
    vocab.lex_attr_getters = srsly.pickle_loads(lex_attr_getters)
 | 
						|
    vocab.lookups = lookups
 | 
						|
    vocab.get_noun_chunks = get_noun_chunks
 | 
						|
    return vocab
 | 
						|
 | 
						|
 | 
						|
copy_reg.pickle(Vocab, pickle_vocab, unpickle_vocab)
 |