mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* NEL: read sentences and ents from reference * fiddling with sent_start annotations * add KB serialization test * KB write additional file with strings.json * score_links function to calculate NEL P/R/F * formatting * documentation
		
			
				
	
	
		
			328 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			328 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
title: EntityLinker
 | 
						|
tag: class
 | 
						|
source: spacy/pipeline/entity_linker.py
 | 
						|
new: 2.2
 | 
						|
teaser: 'Pipeline component for named entity linking and disambiguation'
 | 
						|
api_base_class: /api/pipe
 | 
						|
api_string_name: entity_linker
 | 
						|
api_trainable: true
 | 
						|
---
 | 
						|
 | 
						|
An `EntityLinker` component disambiguates textual mentions (tagged as named
 | 
						|
entities) to unique identifiers, grounding the named entities into the "real
 | 
						|
world". It requires a `KnowledgeBase`, as well as a function to generate
 | 
						|
plausible candidates from that `KnowledgeBase` given a certain textual mention,
 | 
						|
and a machine learning model to pick the right candidate, given the local
 | 
						|
context of the mention.
 | 
						|
 | 
						|
## Config and implementation {#config}
 | 
						|
 | 
						|
The default config is defined by the pipeline component factory and describes
 | 
						|
how the component should be configured. You can override its settings via the
 | 
						|
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | 
						|
[`config.cfg` for training](/usage/training#config). See the
 | 
						|
[model architectures](/api/architectures) documentation for details on the
 | 
						|
architectures and their arguments and hyperparameters.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> from spacy.pipeline.entity_linker import DEFAULT_NEL_MODEL
 | 
						|
> config = {
 | 
						|
>    "labels_discard": [],
 | 
						|
>    "incl_prior": True,
 | 
						|
>    "incl_context": True,
 | 
						|
>    "model": DEFAULT_NEL_MODEL,
 | 
						|
>    "kb_loader": {'@misc': 'spacy.EmptyKB.v1', 'entity_vector_length': 64},
 | 
						|
>    "get_candidates": {'@misc': 'spacy.CandidateGenerator.v1'},
 | 
						|
> }
 | 
						|
> nlp.add_pipe("entity_linker", config=config)
 | 
						|
> ```
 | 
						|
 | 
						|
| Setting          | Description                                                                                                                                                                                                                                                              |
 | 
						|
| ---------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
 | 
						|
| `labels_discard` | NER labels that will automatically get a "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~                                                                                                                                                                           |
 | 
						|
| `incl_prior`     | Whether or not to include prior probabilities from the KB in the model. Defaults to `True`. ~~bool~~                                                                                                                                                                     |
 | 
						|
| `incl_context`   | Whether or not to include the local context in the model. Defaults to `True`. ~~bool~~                                                                                                                                                                                   |
 | 
						|
| `model`          | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [EntityLinker](/api/architectures#EntityLinker). ~~Model~~                                                                                                                   |
 | 
						|
| `kb_loader`      | Function that creates a [`KnowledgeBase`](/api/kb) from a `Vocab` instance. Defaults to [EmptyKB](/api/architectures#EmptyKB), a function returning an empty `KnowledgeBase` with an `entity_vector_length` of `64`. ~~Callable[[Vocab], KnowledgeBase]~~                |
 | 
						|
| `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ |
 | 
						|
 | 
						|
```python
 | 
						|
%%GITHUB_SPACY/spacy/pipeline/entity_linker.py
 | 
						|
```
 | 
						|
 | 
						|
## EntityLinker.\_\_init\_\_ {#init tag="method"}
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> # Construction via add_pipe with default model
 | 
						|
> entity_linker = nlp.add_pipe("entity_linker")
 | 
						|
>
 | 
						|
> # Construction via add_pipe with custom model
 | 
						|
> config = {"model": {"@architectures": "my_el.v1"}}
 | 
						|
> entity_linker = nlp.add_pipe("entity_linker", config=config)
 | 
						|
>
 | 
						|
> # Construction via add_pipe with custom KB and candidate generation
 | 
						|
> config = {"kb": {"@misc": "my_kb.v1"}}
 | 
						|
> entity_linker = nlp.add_pipe("entity_linker", config=config)
 | 
						|
>
 | 
						|
> # Construction from class
 | 
						|
> from spacy.pipeline import EntityLinker
 | 
						|
> entity_linker = EntityLinker(nlp.vocab, model)
 | 
						|
> ```
 | 
						|
 | 
						|
Create a new pipeline instance. In your application, you would normally use a
 | 
						|
shortcut for this and instantiate the component using its string name and
 | 
						|
[`nlp.add_pipe`](/api/language#add_pipe). Note that both the internal
 | 
						|
`KnowledgeBase` as well as the Candidate generator can be customized by
 | 
						|
providing custom registered functions.
 | 
						|
 | 
						|
| Name             | Description                                                                                                                      |
 | 
						|
| ---------------- | -------------------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `vocab`          | The shared vocabulary. ~~Vocab~~                                                                                                 |
 | 
						|
| `model`          | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model~~                                        |
 | 
						|
| `name`           | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~                              |
 | 
						|
| _keyword-only_   |                                                                                                                                  |
 | 
						|
| `kb_loader`      | Function that creates a [`KnowledgeBase`](/api/kb) from a `Vocab` instance. ~~Callable[[Vocab], KnowledgeBase]~~                 |
 | 
						|
| `get_candidates` | Function that generates plausible candidates for a given `Span` object. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ |
 | 
						|
| `labels_discard` | NER labels that will automatically get a `"NIL"` prediction. ~~Iterable[str]~~                                                   |
 | 
						|
| `incl_prior`     | Whether or not to include prior probabilities from the KB in the model. ~~bool~~                                                 |
 | 
						|
| `incl_context`   | Whether or not to include the local context in the model. ~~bool~~                                                               |
 | 
						|
 | 
						|
## EntityLinker.\_\_call\_\_ {#call tag="method"}
 | 
						|
 | 
						|
Apply the pipe to one document. The document is modified in place, and returned.
 | 
						|
This usually happens under the hood when the `nlp` object is called on a text
 | 
						|
and all pipeline components are applied to the `Doc` in order. Both
 | 
						|
[`__call__`](/api/entitylinker#call) and [`pipe`](/api/entitylinker#pipe)
 | 
						|
delegate to the [`predict`](/api/entitylinker#predict) and
 | 
						|
[`set_annotations`](/api/entitylinker#set_annotations) methods.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> doc = nlp("This is a sentence.")
 | 
						|
> entity_linker = nlp.add_pipe("entity_linker")
 | 
						|
> # This usually happens under the hood
 | 
						|
> processed = entity_linker(doc)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Description                      |
 | 
						|
| ----------- | -------------------------------- |
 | 
						|
| `doc`       | The document to process. ~~Doc~~ |
 | 
						|
| **RETURNS** | The processed document. ~~Doc~~  |
 | 
						|
 | 
						|
## EntityLinker.pipe {#pipe tag="method"}
 | 
						|
 | 
						|
Apply the pipe to a stream of documents. This usually happens under the hood
 | 
						|
when the `nlp` object is called on a text and all pipeline components are
 | 
						|
applied to the `Doc` in order. Both [`__call__`](/api/entitylinker#call) and
 | 
						|
[`pipe`](/api/entitylinker#pipe) delegate to the
 | 
						|
[`predict`](/api/entitylinker#predict) and
 | 
						|
[`set_annotations`](/api/entitylinker#set_annotations) methods.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = nlp.add_pipe("entity_linker")
 | 
						|
> for doc in entity_linker.pipe(docs, batch_size=50):
 | 
						|
>     pass
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                   |
 | 
						|
| -------------- | ------------------------------------------------------------- |
 | 
						|
| `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | 
						|
| _keyword-only_ |                                                               |
 | 
						|
| `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | 
						|
| **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | 
						|
 | 
						|
## EntityLinker.begin_training {#begin_training tag="method"}
 | 
						|
 | 
						|
Initialize the component for training and return an
 | 
						|
[`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a
 | 
						|
function that returns an iterable of [`Example`](/api/example) objects. The data
 | 
						|
examples are used to **initialize the model** of the component and can either be
 | 
						|
the full training data or a representative sample. Initialization includes
 | 
						|
validating the network,
 | 
						|
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
 | 
						|
setting up the label scheme based on the data.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = nlp.add_pipe("entity_linker", last=True)
 | 
						|
> optimizer = entity_linker.begin_training(lambda: [], pipeline=nlp.pipeline)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                                                                                           |
 | 
						|
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
 | 
						|
| _keyword-only_ |                                                                                                                                       |
 | 
						|
| `pipeline`     | Optional list of pipeline components that this component is part of. ~~Optional[List[Tuple[str, Callable[[Doc], Doc]]]]~~             |
 | 
						|
| `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~                         |
 | 
						|
| **RETURNS**    | The optimizer. ~~Optimizer~~                                                                                                          |
 | 
						|
 | 
						|
## EntityLinker.predict {#predict tag="method"}
 | 
						|
 | 
						|
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
 | 
						|
modifying them. Returns the KB IDs for each entity in each doc, including `NIL`
 | 
						|
if there is no prediction.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = nlp.add_pipe("entity_linker")
 | 
						|
> kb_ids = entity_linker.predict([doc1, doc2])
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Description                                 |
 | 
						|
| ----------- | ------------------------------------------- |
 | 
						|
| `docs`      | The documents to predict. ~~Iterable[Doc]~~ |
 | 
						|
| **RETURNS** | `List[str]`                                 | The predicted KB identifiers for the entities in the `docs`. ~~List[str]~~ |
 | 
						|
 | 
						|
## EntityLinker.set_annotations {#set_annotations tag="method"}
 | 
						|
 | 
						|
Modify a batch of documents, using pre-computed entity IDs for a list of named
 | 
						|
entities.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = nlp.add_pipe("entity_linker")
 | 
						|
> kb_ids = entity_linker.predict([doc1, doc2])
 | 
						|
> entity_linker.set_annotations([doc1, doc2], kb_ids)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name     | Description                                                                                                     |
 | 
						|
| -------- | --------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `docs`   | The documents to modify. ~~Iterable[Doc]~~                                                                      |
 | 
						|
| `kb_ids` | The knowledge base identifiers for the entities in the docs, predicted by `EntityLinker.predict`. ~~List[str]~~ |
 | 
						|
 | 
						|
## EntityLinker.update {#update tag="method"}
 | 
						|
 | 
						|
Learn from a batch of [`Example`](/api/example) objects, updating both the
 | 
						|
pipe's entity linking model and context encoder. Delegates to
 | 
						|
[`predict`](/api/entitylinker#predict).
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = nlp.add_pipe("entity_linker")
 | 
						|
> optimizer = nlp.begin_training()
 | 
						|
> losses = entity_linker.update(examples, sgd=optimizer)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name              | Description                                                                                                                        |
 | 
						|
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `examples`        | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                                  |
 | 
						|
| _keyword-only_    |                                                                                                                                    |
 | 
						|
| `drop`            | The dropout rate. ~~float~~                                                                                                        |
 | 
						|
| `set_annotations` | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](#set_annotations). ~~bool~~ |
 | 
						|
| `sgd`             | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~                      |
 | 
						|
| `losses`          | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~           |
 | 
						|
| **RETURNS**       | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                              |
 | 
						|
 | 
						|
## EntityLinker.score {#score tag="method" new="3"}
 | 
						|
 | 
						|
Score a batch of examples.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> scores = entity_linker.score(examples)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Description                                                                                    |
 | 
						|
| ----------- | ---------------------------------------------------------------------------------------------- |
 | 
						|
| `examples`  | The examples to score. ~~Iterable[Example]~~                                                   |
 | 
						|
| **RETURNS** | The scores, produced by [`Scorer.score_links`](/api/scorer#score_links) . ~~Dict[str, float]~~ |
 | 
						|
 | 
						|
## EntityLinker.create_optimizer {#create_optimizer tag="method"}
 | 
						|
 | 
						|
Create an optimizer for the pipeline component.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = nlp.add_pipe("entity_linker")
 | 
						|
> optimizer = entity_linker.create_optimizer()
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Description                  |
 | 
						|
| ----------- | ---------------------------- |
 | 
						|
| **RETURNS** | The optimizer. ~~Optimizer~~ |
 | 
						|
 | 
						|
## EntityLinker.use_params {#use_params tag="method, contextmanager"}
 | 
						|
 | 
						|
Modify the pipe's model, to use the given parameter values. At the end of the
 | 
						|
context, the original parameters are restored.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = nlp.add_pipe("entity_linker")
 | 
						|
> with entity_linker.use_params(optimizer.averages):
 | 
						|
>     entity_linker.to_disk("/best_model")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name     | Description                                        |
 | 
						|
| -------- | -------------------------------------------------- |
 | 
						|
| `params` | The parameter values to use in the model. ~~dict~~ |
 | 
						|
 | 
						|
## EntityLinker.to_disk {#to_disk tag="method"}
 | 
						|
 | 
						|
Serialize the pipe to disk.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = nlp.add_pipe("entity_linker")
 | 
						|
> entity_linker.to_disk("/path/to/entity_linker")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                                                                                                |
 | 
						|
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | 
						|
| `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | 
						|
| _keyword-only_ |                                                                                                                                            |
 | 
						|
| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | 
						|
 | 
						|
## EntityLinker.from_disk {#from_disk tag="method"}
 | 
						|
 | 
						|
Load the pipe from disk. Modifies the object in place and returns it.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> entity_linker = nlp.add_pipe("entity_linker")
 | 
						|
> entity_linker.from_disk("/path/to/entity_linker")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                                                     |
 | 
						|
| -------------- | ----------------------------------------------------------------------------------------------- |
 | 
						|
| `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | 
						|
| _keyword-only_ |                                                                                                 |
 | 
						|
| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | 
						|
| **RETURNS**    | The modified `EntityLinker` object. ~~EntityLinker~~                                            |
 | 
						|
 | 
						|
## Serialization fields {#serialization-fields}
 | 
						|
 | 
						|
During serialization, spaCy will export several data fields used to restore
 | 
						|
different aspects of the object. If needed, you can exclude them from
 | 
						|
serialization by passing in the string names via the `exclude` argument.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> data = entity_linker.to_disk("/path", exclude=["vocab"])
 | 
						|
> ```
 | 
						|
 | 
						|
| Name    | Description                                                    |
 | 
						|
| ------- | -------------------------------------------------------------- |
 | 
						|
| `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | 
						|
| `cfg`   | The config file. You usually don't want to exclude this.       |
 | 
						|
| `model` | The binary model data. You usually don't want to exclude this. |
 | 
						|
| `kb`    | The knowledge base. You usually don't want to exclude this.    |
 |