* document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * typo fix * add candidate API to kb documentation * update API sidebar with EntityLinker and KnowledgeBase * remove EL from 101 docs * remove entity linker from 101 pipelines / rephrase * custom el model instead of existing model * set version to 2.2 for EL functionality * update documentation for 2 CLI scripts
15 KiB
title | teaser | tag | source | new |
---|---|---|---|---|
EntityLinker | Functionality to disambiguate a named entity in text to a unique knowledge base identifier. | class | spacy/pipeline/pipes.pyx | 2.2 |
This class is a subclass of Pipe
and follows the same API. The pipeline
component is available in the processing pipeline
via the ID "entity_linker"
.
EntityLinker.Model
Initialize a model for the pipe. The model should implement the
thinc.neural.Model
API, and should contain a field tok2vec
that contains
the context encoder. Wrappers are under development for most major machine
learning libraries.
Name | Type | Description |
---|---|---|
**kwargs |
- | Parameters for initializing the model |
RETURNS | object | The initialized model. |
EntityLinker.__init__
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
nlp.create_pipe
.
Example
# Construction via create_pipe entity_linker = nlp.create_pipe("entity_linker") # Construction from class from spacy.pipeline import EntityLinker entity_linker = EntityLinker(nlp.vocab) entity_linker.from_disk("/path/to/model")
Name | Type | Description |
---|---|---|
vocab |
Vocab |
The shared vocabulary. |
model |
thinc.neural.Model / True |
The model powering the pipeline component. If no model is supplied, the model is created when you call begin_training , from_disk or from_bytes . |
hidden_width |
int | Width of the hidden layer of the entity linking model, defaults to 128. |
incl_prior |
bool | Whether or not to include prior probabilities in the model. Defaults to True. |
incl_context |
bool | Whether or not to include the local context in the model (if not: only prior probabilites are used). Defaults to True. |
RETURNS | EntityLinker |
The newly constructed object. |
EntityLinker.__call__
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the nlp
object is called on a text
and all pipeline components are applied to the Doc
in order. Both
__call__
and
pipe
delegate to the
predict
and
set_annotations
methods.
Example
entity_linker = EntityLinker(nlp.vocab) doc = nlp(u"This is a sentence.") # This usually happens under the hood processed = entity_linker(doc)
Name | Type | Description |
---|---|---|
doc |
Doc |
The document to process. |
RETURNS | Doc |
The processed document. |
EntityLinker.pipe
Apply the pipe to a stream of documents. This usually happens under the hood
when the nlp
object is called on a text and all pipeline components are
applied to the Doc
in order. Both __call__
and
pipe
delegate to the
predict
and
set_annotations
methods.
Example
entity_linker = EntityLinker(nlp.vocab) for doc in entity_linker.pipe(docs, batch_size=50): pass
Name | Type | Description |
---|---|---|
stream |
iterable | A stream of documents. |
batch_size |
int | The number of texts to buffer. Defaults to 128 . |
YIELDS | Doc |
Processed documents in the order of the original text. |
EntityLinker.predict
Apply the pipeline's model to a batch of docs, without modifying them.
Example
entity_linker = EntityLinker(nlp.vocab) kb_ids, tensors = entity_linker.predict([doc1, doc2])
Name | Type | Description |
---|---|---|
docs |
iterable | The documents to predict. |
RETURNS | tuple | A (kb_ids, tensors) tuple where kb_ids are the model's predicted KB identifiers for the entities in the docs , and tensors are the token representations used to predict these identifiers. |
EntityLinker.set_annotations
Modify a batch of documents, using pre-computed entity IDs for a list of named entities.
Example
entity_linker = EntityLinker(nlp.vocab) kb_ids, tensors = entity_linker.predict([doc1, doc2]) entity_linker.set_annotations([doc1, doc2], kb_ids, tensors)
Name | Type | Description |
---|---|---|
docs |
iterable | The documents to modify. |
kb_ids |
iterable | The knowledge base identifiers for the entities in the docs, predicted by EntityLinker.predict . |
tensors |
iterable | The token representations used to predict the identifiers. |
EntityLinker.update
Learn from a batch of documents and gold-standard information, updating both the
pipe's entity linking model and context encoder. Delegates to predict
and
get_loss
.
Example
entity_linker = EntityLinker(nlp.vocab) losses = {} optimizer = nlp.begin_training() entity_linker.update([doc1, doc2], [gold1, gold2], losses=losses, sgd=optimizer)
Name | Type | Description |
---|---|---|
docs |
iterable | A batch of documents to learn from. |
golds |
iterable | The gold-standard data. Must have the same length as docs . |
drop |
float | The dropout rate, used both for the EL model and the context encoder. |
sgd |
callable | The optimizer for the EL model. Should take two arguments weights and gradient , and an optional ID. |
losses |
dict | Optional record of the loss during training. The value keyed by the model's name is updated. |
EntityLinker.get_loss
Find the loss and gradient of loss for the entities in a batch of documents and their predicted scores.
Example
entity_linker = EntityLinker(nlp.vocab) kb_ids, tensors = entity_linker.predict(docs) loss, d_loss = entity_linker.get_loss(docs, [gold1, gold2], kb_ids, tensors)
Name | Type | Description |
---|---|---|
docs |
iterable | The batch of documents. |
golds |
iterable | The gold-standard data. Must have the same length as docs . |
kb_ids |
iterable | KB identifiers representing the model's predictions. |
tensors |
iterable | The token representations used to predict the identifiers |
RETURNS | tuple | The loss and the gradient, i.e. (loss, gradient) . |
EntityLinker.set_kb
Define the knowledge base (KB) used for disambiguating named entities to KB identifiers.
Example
entity_linker = EntityLinker(nlp.vocab) entity_linker.set_kb(kb)
Name | Type | Description |
---|---|---|
kb |
KnowledgeBase |
The KnowledgeBase . |
EntityLinker.begin_training
Initialize the pipe for training, using data examples if available. If no model
has been initialized yet, the model is added.
Before calling this method, a knowledge base should have been defined with set_kb
.
Example
entity_linker = EntityLinker(nlp.vocab) entity_linker.set_kb(kb) nlp.add_pipe(entity_linker, last=True) optimizer = entity_linker.begin_training(pipeline=nlp.pipeline)
Name | Type | Description |
---|---|---|
gold_tuples |
iterable | Optional gold-standard annotations from which to construct GoldParse objects. |
pipeline |
list | Optional list of pipeline components that this component is part of. |
sgd |
callable | An optional optimizer. Should take two arguments weights and gradient , and an optional ID. Will be created via EntityLinker if not set. |
RETURNS | callable | An optimizer. |
EntityLinker.create_optimizer
Create an optimizer for the pipeline component.
Example
entity_linker = EntityLinker(nlp.vocab) optimizer = entity_linker.create_optimizer()
Name | Type | Description |
---|---|---|
RETURNS | callable | The optimizer. |
EntityLinker.use_params
Modify the pipe's EL model, to use the given parameter values.
Example
entity_linker = EntityLinker(nlp.vocab) with entity_linker.use_params(optimizer.averages): entity_linker.to_disk("/best_model")
Name | Type | Description |
---|---|---|
params |
dict | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
EntityLinker.to_disk
Serialize the pipe to disk.
Example
entity_linker = EntityLinker(nlp.vocab) entity_linker.to_disk("/path/to/entity_linker")
Name | Type | Description |
---|---|---|
path |
unicode / Path |
A path to a directory, which will be created if it doesn't exist. Paths may be either strings or Path -like objects. |
exclude |
list | String names of serialization fields to exclude. |
EntityLinker.from_disk
Load the pipe from disk. Modifies the object in place and returns it.
Example
entity_linker = EntityLinker(nlp.vocab) entity_linker.from_disk("/path/to/entity_linker")
Name | Type | Description |
---|---|---|
path |
unicode / Path |
A path to a directory. Paths may be either strings or Path -like objects. |
exclude |
list | String names of serialization fields to exclude. |
RETURNS | EntityLinker |
The modified EntityLinker object. |
Serialization fields
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the exclude
argument.
Example
data = entity_linker.to_disk("/path", exclude=["vocab"])
Name | Description |
---|---|
vocab |
The shared Vocab . |
cfg |
The config file. You usually don't want to exclude this. |
model |
The binary model data. You usually don't want to exclude this. |
kb |
The knowledge base. You usually don't want to exclude this. |