mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* Add initial reproducibility tests * failing test for default_text_classifier (WIP) * track trouble to underlying tok2vec layer * add regression test for Issue 5551 * tests go green with https://github.com/explosion/thinc/pull/359 * update test * adding fixed seeds to HashEmbed layers, seems to fix the reproducility issue Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			372 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			372 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from thinc.api import chain, clone, concatenate, with_array, uniqued
 | |
| from thinc.api import Model, noop, with_padded, Maxout, expand_window
 | |
| from thinc.api import HashEmbed, StaticVectors, PyTorchLSTM
 | |
| from thinc.api import residual, LayerNorm, FeatureExtractor, Mish
 | |
| 
 | |
| from ... import util
 | |
| from ...util import registry
 | |
| from ...ml import _character_embed
 | |
| from ...pipeline.tok2vec import Tok2VecListener
 | |
| from ...attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
 | |
| 
 | |
| 
 | |
| @registry.architectures.register("spacy.Tok2VecTensors.v1")
 | |
| def tok2vec_tensors_v1(width):
 | |
|     tok2vec = Tok2VecListener("tok2vec", width=width)
 | |
|     return tok2vec
 | |
| 
 | |
| 
 | |
| @registry.architectures.register("spacy.VocabVectors.v1")
 | |
| def get_vocab_vectors(name):
 | |
|     nlp = util.load_model(name)
 | |
|     return nlp.vocab.vectors
 | |
| 
 | |
| 
 | |
| @registry.architectures.register("spacy.Tok2Vec.v1")
 | |
| def Tok2Vec(extract, embed, encode):
 | |
|     field_size = 0
 | |
|     if encode.attrs.get("receptive_field", None):
 | |
|         field_size = encode.attrs["receptive_field"]
 | |
|     with Model.define_operators({">>": chain, "|": concatenate}):
 | |
|         tok2vec = extract >> with_array(embed >> encode, pad=field_size)
 | |
|     tok2vec.set_dim("nO", encode.get_dim("nO"))
 | |
|     tok2vec.set_ref("embed", embed)
 | |
|     tok2vec.set_ref("encode", encode)
 | |
|     return tok2vec
 | |
| 
 | |
| 
 | |
| @registry.architectures.register("spacy.Doc2Feats.v1")
 | |
| def Doc2Feats(columns):
 | |
|     return FeatureExtractor(columns)
 | |
| 
 | |
| 
 | |
| @registry.architectures.register("spacy.HashEmbedCNN.v1")
 | |
| def hash_embed_cnn(
 | |
|     pretrained_vectors,
 | |
|     width,
 | |
|     depth,
 | |
|     embed_size,
 | |
|     maxout_pieces,
 | |
|     window_size,
 | |
|     subword_features,
 | |
|     dropout,
 | |
| ):
 | |
|     # Does not use character embeddings: set to False by default
 | |
|     return build_Tok2Vec_model(
 | |
|         width=width,
 | |
|         embed_size=embed_size,
 | |
|         pretrained_vectors=pretrained_vectors,
 | |
|         conv_depth=depth,
 | |
|         bilstm_depth=0,
 | |
|         maxout_pieces=maxout_pieces,
 | |
|         window_size=window_size,
 | |
|         subword_features=subword_features,
 | |
|         char_embed=False,
 | |
|         nM=0,
 | |
|         nC=0,
 | |
|         dropout=dropout,
 | |
|     )
 | |
| 
 | |
| 
 | |
| @registry.architectures.register("spacy.HashCharEmbedCNN.v1")
 | |
| def hash_charembed_cnn(
 | |
|     pretrained_vectors,
 | |
|     width,
 | |
|     depth,
 | |
|     embed_size,
 | |
|     maxout_pieces,
 | |
|     window_size,
 | |
|     nM,
 | |
|     nC,
 | |
|     dropout,
 | |
| ):
 | |
|     # Allows using character embeddings by setting nC, nM and char_embed=True
 | |
|     return build_Tok2Vec_model(
 | |
|         width=width,
 | |
|         embed_size=embed_size,
 | |
|         pretrained_vectors=pretrained_vectors,
 | |
|         conv_depth=depth,
 | |
|         bilstm_depth=0,
 | |
|         maxout_pieces=maxout_pieces,
 | |
|         window_size=window_size,
 | |
|         subword_features=False,
 | |
|         char_embed=True,
 | |
|         nM=nM,
 | |
|         nC=nC,
 | |
|         dropout=dropout,
 | |
|     )
 | |
| 
 | |
| 
 | |
| @registry.architectures.register("spacy.HashEmbedBiLSTM.v1")
 | |
| def hash_embed_bilstm_v1(
 | |
|     pretrained_vectors,
 | |
|     width,
 | |
|     depth,
 | |
|     embed_size,
 | |
|     subword_features,
 | |
|     maxout_pieces,
 | |
|     dropout,
 | |
| ):
 | |
|     # Does not use character embeddings: set to False by default
 | |
|     return build_Tok2Vec_model(
 | |
|         width=width,
 | |
|         embed_size=embed_size,
 | |
|         pretrained_vectors=pretrained_vectors,
 | |
|         bilstm_depth=depth,
 | |
|         conv_depth=0,
 | |
|         maxout_pieces=maxout_pieces,
 | |
|         window_size=1,
 | |
|         subword_features=subword_features,
 | |
|         char_embed=False,
 | |
|         nM=0,
 | |
|         nC=0,
 | |
|         dropout=dropout,
 | |
|     )
 | |
| 
 | |
| 
 | |
| @registry.architectures.register("spacy.HashCharEmbedBiLSTM.v1")
 | |
| def hash_char_embed_bilstm_v1(
 | |
|     pretrained_vectors, width, depth, embed_size, maxout_pieces, nM, nC, dropout
 | |
| ):
 | |
|     # Allows using character embeddings by setting nC, nM and char_embed=True
 | |
|     return build_Tok2Vec_model(
 | |
|         width=width,
 | |
|         embed_size=embed_size,
 | |
|         pretrained_vectors=pretrained_vectors,
 | |
|         bilstm_depth=depth,
 | |
|         conv_depth=0,
 | |
|         maxout_pieces=maxout_pieces,
 | |
|         window_size=1,
 | |
|         subword_features=False,
 | |
|         char_embed=True,
 | |
|         nM=nM,
 | |
|         nC=nC,
 | |
|         dropout=dropout,
 | |
|     )
 | |
| 
 | |
| 
 | |
| @registry.architectures.register("spacy.LayerNormalizedMaxout.v1")
 | |
| def LayerNormalizedMaxout(width, maxout_pieces):
 | |
|     return Maxout(nO=width, nP=maxout_pieces, dropout=0.0, normalize=True)
 | |
| 
 | |
| 
 | |
| @registry.architectures.register("spacy.MultiHashEmbed.v1")
 | |
| def MultiHashEmbed(
 | |
|     columns, width, rows, use_subwords, pretrained_vectors, mix, dropout
 | |
| ):
 | |
|     norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"), dropout=dropout, seed=6)
 | |
|     if use_subwords:
 | |
|         prefix = HashEmbed(
 | |
|             nO=width, nV=rows // 2, column=columns.index("PREFIX"), dropout=dropout, seed=7
 | |
|         )
 | |
|         suffix = HashEmbed(
 | |
|             nO=width, nV=rows // 2, column=columns.index("SUFFIX"), dropout=dropout, seed=8
 | |
|         )
 | |
|         shape = HashEmbed(
 | |
|             nO=width, nV=rows // 2, column=columns.index("SHAPE"), dropout=dropout, seed=9
 | |
|         )
 | |
| 
 | |
|     if pretrained_vectors:
 | |
|         glove = StaticVectors(
 | |
|             vectors=pretrained_vectors.data,
 | |
|             nO=width,
 | |
|             column=columns.index(ID),
 | |
|             dropout=dropout,
 | |
|         )
 | |
| 
 | |
|     with Model.define_operators({">>": chain, "|": concatenate}):
 | |
|         if not use_subwords and not pretrained_vectors:
 | |
|             embed_layer = norm
 | |
|         else:
 | |
|             if use_subwords and pretrained_vectors:
 | |
|                 concat_columns = glove | norm | prefix | suffix | shape
 | |
|             elif use_subwords:
 | |
|                 concat_columns = norm | prefix | suffix | shape
 | |
|             else:
 | |
|                 concat_columns = glove | norm
 | |
| 
 | |
|             embed_layer = uniqued(concat_columns >> mix, column=columns.index("ORTH"))
 | |
| 
 | |
|     return embed_layer
 | |
| 
 | |
| 
 | |
| @registry.architectures.register("spacy.CharacterEmbed.v1")
 | |
| def CharacterEmbed(columns, width, rows, nM, nC, features, dropout):
 | |
|     norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"), dropout=dropout, seed=5)
 | |
|     chr_embed = _character_embed.CharacterEmbed(nM=nM, nC=nC)
 | |
|     with Model.define_operators({">>": chain, "|": concatenate}):
 | |
|         embed_layer = chr_embed | features >> with_array(norm)
 | |
|     embed_layer.set_dim("nO", nM * nC + width)
 | |
|     return embed_layer
 | |
| 
 | |
| 
 | |
| @registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
 | |
| def MaxoutWindowEncoder(width, window_size, maxout_pieces, depth):
 | |
|     cnn = chain(
 | |
|         expand_window(window_size=window_size),
 | |
|         Maxout(
 | |
|             nO=width,
 | |
|             nI=width * ((window_size * 2) + 1),
 | |
|             nP=maxout_pieces,
 | |
|             dropout=0.0,
 | |
|             normalize=True,
 | |
|         ),
 | |
|     )
 | |
|     model = clone(residual(cnn), depth)
 | |
|     model.set_dim("nO", width)
 | |
|     model.attrs["receptive_field"] = window_size * depth
 | |
|     return model
 | |
| 
 | |
| 
 | |
| @registry.architectures.register("spacy.MishWindowEncoder.v1")
 | |
| def MishWindowEncoder(width, window_size, depth):
 | |
|     cnn = chain(
 | |
|         expand_window(window_size=window_size),
 | |
|         Mish(nO=width, nI=width * ((window_size * 2) + 1)),
 | |
|         LayerNorm(width),
 | |
|     )
 | |
|     model = clone(residual(cnn), depth)
 | |
|     model.set_dim("nO", width)
 | |
|     return model
 | |
| 
 | |
| 
 | |
| @registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
 | |
| def TorchBiLSTMEncoder(width, depth):
 | |
|     import torch.nn
 | |
| 
 | |
|     # TODO FIX
 | |
|     from thinc.api import PyTorchRNNWrapper
 | |
| 
 | |
|     if depth == 0:
 | |
|         return noop()
 | |
|     return with_padded(
 | |
|         PyTorchRNNWrapper(torch.nn.LSTM(width, width // 2, depth, bidirectional=True))
 | |
|     )
 | |
| 
 | |
| 
 | |
| def build_Tok2Vec_model(
 | |
|     width,
 | |
|     embed_size,
 | |
|     pretrained_vectors,
 | |
|     window_size,
 | |
|     maxout_pieces,
 | |
|     subword_features,
 | |
|     char_embed,
 | |
|     nM,
 | |
|     nC,
 | |
|     conv_depth,
 | |
|     bilstm_depth,
 | |
|     dropout,
 | |
| ) -> Model:
 | |
|     if char_embed:
 | |
|         subword_features = False
 | |
|     cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
 | |
|     with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
 | |
|         norm = HashEmbed(
 | |
|             nO=width, nV=embed_size, column=cols.index(NORM), dropout=None,
 | |
|             seed=0
 | |
|         )
 | |
|         if subword_features:
 | |
|             prefix = HashEmbed(
 | |
|                 nO=width, nV=embed_size // 2, column=cols.index(PREFIX), dropout=None,
 | |
|                 seed=1
 | |
|             )
 | |
|             suffix = HashEmbed(
 | |
|                 nO=width, nV=embed_size // 2, column=cols.index(SUFFIX), dropout=None,
 | |
|                 seed=2
 | |
|             )
 | |
|             shape = HashEmbed(
 | |
|                 nO=width, nV=embed_size // 2, column=cols.index(SHAPE), dropout=None,
 | |
|                 seed=3
 | |
|             )
 | |
|         else:
 | |
|             prefix, suffix, shape = (None, None, None)
 | |
|         if pretrained_vectors is not None:
 | |
|             glove = StaticVectors(
 | |
|                 vectors=pretrained_vectors.data,
 | |
|                 nO=width,
 | |
|                 column=cols.index(ID),
 | |
|                 dropout=dropout,
 | |
|             )
 | |
| 
 | |
|             if subword_features:
 | |
|                 columns = 5
 | |
|                 embed = uniqued(
 | |
|                     (glove | norm | prefix | suffix | shape)
 | |
|                     >> Maxout(
 | |
|                         nO=width,
 | |
|                         nI=width * columns,
 | |
|                         nP=3,
 | |
|                         dropout=0.0,
 | |
|                         normalize=True,
 | |
|                     ),
 | |
|                     column=cols.index(ORTH),
 | |
|                 )
 | |
|             else:
 | |
|                 columns = 2
 | |
|                 embed = uniqued(
 | |
|                     (glove | norm)
 | |
|                     >> Maxout(
 | |
|                         nO=width,
 | |
|                         nI=width * columns,
 | |
|                         nP=3,
 | |
|                         dropout=0.0,
 | |
|                         normalize=True,
 | |
|                     ),
 | |
|                     column=cols.index(ORTH),
 | |
|                 )
 | |
|         elif subword_features:
 | |
|             columns = 4
 | |
|             embed = uniqued(
 | |
|                 concatenate(norm, prefix, suffix, shape)
 | |
|                 >> Maxout(
 | |
|                     nO=width,
 | |
|                     nI=width * columns,
 | |
|                     nP=3,
 | |
|                     dropout=0.0,
 | |
|                     normalize=True,
 | |
|                 ),
 | |
|                 column=cols.index(ORTH),
 | |
|             )
 | |
|         elif char_embed:
 | |
|             embed = _character_embed.CharacterEmbed(nM=nM, nC=nC) | FeatureExtractor(
 | |
|                 cols
 | |
|             ) >> with_array(norm)
 | |
|             reduce_dimensions = Maxout(
 | |
|                 nO=width,
 | |
|                 nI=nM * nC + width,
 | |
|                 nP=3,
 | |
|                 dropout=0.0,
 | |
|                 normalize=True,
 | |
|             )
 | |
|         else:
 | |
|             embed = norm
 | |
| 
 | |
|         convolution = residual(
 | |
|             expand_window(window_size=window_size)
 | |
|             >> Maxout(
 | |
|                 nO=width,
 | |
|                 nI=width * ((window_size * 2) + 1),
 | |
|                 nP=maxout_pieces,
 | |
|                 dropout=0.0,
 | |
|                 normalize=True,
 | |
|             )
 | |
|         )
 | |
|         if char_embed:
 | |
|             tok2vec = embed >> with_array(
 | |
|                 reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
 | |
|             )
 | |
|         else:
 | |
|             tok2vec = FeatureExtractor(cols) >> with_array(
 | |
|                 embed >> convolution ** conv_depth, pad=conv_depth
 | |
|             )
 | |
| 
 | |
|         if bilstm_depth >= 1:
 | |
|             tok2vec = tok2vec >> PyTorchLSTM(
 | |
|                 nO=width, nI=width, depth=bilstm_depth, bi=True
 | |
|             )
 | |
|         if tok2vec.has_dim("nO") is not False:
 | |
|             tok2vec.set_dim("nO", width)
 | |
|         tok2vec.set_ref("embed", embed)
 | |
|     return tok2vec
 |