mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			540 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			540 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
---
 | 
						||
title: TrainablePipe
 | 
						||
tag: class
 | 
						||
teaser: Base class for trainable pipeline components
 | 
						||
---
 | 
						||
 | 
						||
This class is a base class and **not instantiated directly**. Trainable pipeline
 | 
						||
components like the [`EntityRecognizer`](/api/entityrecognizer) or
 | 
						||
[`TextCategorizer`](/api/textcategorizer) inherit from it and it defines the
 | 
						||
interface that components should follow to function as trainable components in a
 | 
						||
spaCy pipeline. See the docs on
 | 
						||
[writing trainable components](/usage/processing-pipelines#trainable-components)
 | 
						||
for how to use the `TrainablePipe` base class to implement custom components.
 | 
						||
 | 
						||
{/* TODO: Pipe vs TrainablePipe, check methods below (all renamed to TrainablePipe for now) */}
 | 
						||
 | 
						||
> #### Why is it implemented in Cython?
 | 
						||
>
 | 
						||
> The `TrainablePipe` class is implemented in a `.pyx` module, the extension
 | 
						||
> used by [Cython](/api/cython). This is needed so that **other** Cython
 | 
						||
> classes, like the [`EntityRecognizer`](/api/entityrecognizer) can inherit from
 | 
						||
> it. But it doesn't mean you have to implement trainable components in Cython –
 | 
						||
> pure Python components like the [`TextCategorizer`](/api/textcategorizer) can
 | 
						||
> also inherit from `TrainablePipe`.
 | 
						||
 | 
						||
```python
 | 
						||
%%GITHUB_SPACY/spacy/pipeline/trainable_pipe.pyx
 | 
						||
```
 | 
						||
 | 
						||
## TrainablePipe.\_\_init\_\_ {id="init",tag="method"}
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> from spacy.pipeline import TrainablePipe
 | 
						||
> from spacy.language import Language
 | 
						||
>
 | 
						||
> class CustomPipe(TrainablePipe):
 | 
						||
>     ...
 | 
						||
>
 | 
						||
> @Language.factory("your_custom_pipe", default_config={"model": MODEL})
 | 
						||
> def make_custom_pipe(nlp, name, model):
 | 
						||
>     return CustomPipe(nlp.vocab, model, name)
 | 
						||
> ```
 | 
						||
 | 
						||
Create a new pipeline instance. In your application, you would normally use a
 | 
						||
shortcut for this and instantiate the component using its string name and
 | 
						||
[`nlp.add_pipe`](/api/language#create_pipe).
 | 
						||
 | 
						||
| Name    | Description                                                                                                                |
 | 
						||
| ------- | -------------------------------------------------------------------------------------------------------------------------- |
 | 
						||
| `vocab` | The shared vocabulary. ~~Vocab~~                                                                                           |
 | 
						||
| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], Any]~~            |
 | 
						||
| `name`  | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~                        |
 | 
						||
| `**cfg` | Additional config parameters and settings. Will be available as the dictionary `cfg` and is serialized with the component. |
 | 
						||
 | 
						||
## TrainablePipe.\_\_call\_\_ {id="call",tag="method"}
 | 
						||
 | 
						||
Apply the pipe to one document. The document is modified in place, and returned.
 | 
						||
This usually happens under the hood when the `nlp` object is called on a text
 | 
						||
and all pipeline components are applied to the `Doc` in order. Both
 | 
						||
[`__call__`](/api/pipe#call) and [`pipe`](/api/pipe#pipe) delegate to the
 | 
						||
[`predict`](/api/pipe#predict) and
 | 
						||
[`set_annotations`](/api/pipe#set_annotations) methods.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> doc = nlp("This is a sentence.")
 | 
						||
> pipe = nlp.add_pipe("your_custom_pipe")
 | 
						||
> # This usually happens under the hood
 | 
						||
> processed = pipe(doc)
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Description                      |
 | 
						||
| ----------- | -------------------------------- |
 | 
						||
| `doc`       | The document to process. ~~Doc~~ |
 | 
						||
| **RETURNS** | The processed document. ~~Doc~~  |
 | 
						||
 | 
						||
## TrainablePipe.pipe {id="pipe",tag="method"}
 | 
						||
 | 
						||
Apply the pipe to a stream of documents. This usually happens under the hood
 | 
						||
when the `nlp` object is called on a text and all pipeline components are
 | 
						||
applied to the `Doc` in order. Both [`__call__`](/api/pipe#call) and
 | 
						||
[`pipe`](/api/pipe#pipe) delegate to the [`predict`](/api/pipe#predict) and
 | 
						||
[`set_annotations`](/api/pipe#set_annotations) methods.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> pipe = nlp.add_pipe("your_custom_pipe")
 | 
						||
> for doc in pipe.pipe(docs, batch_size=50):
 | 
						||
>     pass
 | 
						||
> ```
 | 
						||
 | 
						||
| Name           | Description                                                   |
 | 
						||
| -------------- | ------------------------------------------------------------- |
 | 
						||
| `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | 
						||
| _keyword-only_ |                                                               |
 | 
						||
| `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | 
						||
| **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | 
						||
 | 
						||
## TrainablePipe.set_error_handler {id="set_error_handler",tag="method",version="3"}
 | 
						||
 | 
						||
Define a callback that will be invoked when an error is thrown during processing
 | 
						||
of one or more documents with either [`__call__`](/api/pipe#call) or
 | 
						||
[`pipe`](/api/pipe#pipe). The error handler will be invoked with the original
 | 
						||
component's name, the component itself, the list of documents that was being
 | 
						||
processed, and the original error.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> def warn_error(proc_name, proc, docs, e):
 | 
						||
>     print(f"An error occurred when applying component {proc_name}.")
 | 
						||
>
 | 
						||
> pipe = nlp.add_pipe("ner")
 | 
						||
> pipe.set_error_handler(warn_error)
 | 
						||
> ```
 | 
						||
 | 
						||
| Name            | Description                                                                                                    |
 | 
						||
| --------------- | -------------------------------------------------------------------------------------------------------------- |
 | 
						||
| `error_handler` | A function that performs custom error handling. ~~Callable[[str, Callable[[Doc], Doc], List[Doc], Exception]~~ |
 | 
						||
 | 
						||
## TrainablePipe.get_error_handler {id="get_error_handler",tag="method",version="3"}
 | 
						||
 | 
						||
Retrieve the callback that performs error handling for this component's
 | 
						||
[`__call__`](/api/pipe#call) and [`pipe`](/api/pipe#pipe) methods. If no custom
 | 
						||
function was previously defined with
 | 
						||
[`set_error_handler`](/api/pipe#set_error_handler), a default function is
 | 
						||
returned that simply reraises the exception.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> pipe = nlp.add_pipe("ner")
 | 
						||
> error_handler = pipe.get_error_handler()
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Description                                                                                                      |
 | 
						||
| ----------- | ---------------------------------------------------------------------------------------------------------------- |
 | 
						||
| **RETURNS** | The function that performs custom error handling. ~~Callable[[str, Callable[[Doc], Doc], List[Doc], Exception]~~ |
 | 
						||
 | 
						||
## TrainablePipe.initialize {id="initialize",tag="method",version="3"}
 | 
						||
 | 
						||
Initialize the component for training. `get_examples` should be a function that
 | 
						||
returns an iterable of [`Example`](/api/example) objects. The data examples are
 | 
						||
used to **initialize the model** of the component and can either be the full
 | 
						||
training data or a representative sample. Initialization includes validating the
 | 
						||
network,
 | 
						||
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
 | 
						||
setting up the label scheme based on the data. This method is typically called
 | 
						||
by [`Language.initialize`](/api/language#initialize).
 | 
						||
 | 
						||
<Infobox variant="warning" title="Changed in v3.0" id="begin_training">
 | 
						||
 | 
						||
This method was previously called `begin_training`.
 | 
						||
 | 
						||
</Infobox>
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> pipe = nlp.add_pipe("your_custom_pipe")
 | 
						||
> pipe.initialize(lambda: [], pipeline=nlp.pipeline)
 | 
						||
> ```
 | 
						||
 | 
						||
| Name           | Description                                                                                                                           |
 | 
						||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						||
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
 | 
						||
| _keyword-only_ |                                                                                                                                       |
 | 
						||
| `nlp`          | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                  |
 | 
						||
 | 
						||
## TrainablePipe.predict {id="predict",tag="method"}
 | 
						||
 | 
						||
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
 | 
						||
modifying them.
 | 
						||
 | 
						||
<Infobox variant="danger">
 | 
						||
 | 
						||
This method needs to be overwritten with your own custom `predict` method.
 | 
						||
 | 
						||
</Infobox>
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> pipe = nlp.add_pipe("your_custom_pipe")
 | 
						||
> scores = pipe.predict([doc1, doc2])
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Description                                 |
 | 
						||
| ----------- | ------------------------------------------- |
 | 
						||
| `docs`      | The documents to predict. ~~Iterable[Doc]~~ |
 | 
						||
| **RETURNS** | The model's prediction for each document.   |
 | 
						||
 | 
						||
## TrainablePipe.set_annotations {id="set_annotations",tag="method"}
 | 
						||
 | 
						||
Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
 | 
						||
 | 
						||
<Infobox variant="danger">
 | 
						||
 | 
						||
This method needs to be overwritten with your own custom `set_annotations`
 | 
						||
method.
 | 
						||
 | 
						||
</Infobox>
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> pipe = nlp.add_pipe("your_custom_pipe")
 | 
						||
> scores = pipe.predict(docs)
 | 
						||
> pipe.set_annotations(docs, scores)
 | 
						||
> ```
 | 
						||
 | 
						||
| Name     | Description                                      |
 | 
						||
| -------- | ------------------------------------------------ |
 | 
						||
| `docs`   | The documents to modify. ~~Iterable[Doc]~~       |
 | 
						||
| `scores` | The scores to set, produced by `Tagger.predict`. |
 | 
						||
 | 
						||
## TrainablePipe.update {id="update",tag="method"}
 | 
						||
 | 
						||
Learn from a batch of [`Example`](/api/example) objects containing the
 | 
						||
predictions and gold-standard annotations, and update the component's model.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> pipe = nlp.add_pipe("your_custom_pipe")
 | 
						||
> optimizer = nlp.initialize()
 | 
						||
> losses = pipe.update(examples, sgd=optimizer)
 | 
						||
> ```
 | 
						||
 | 
						||
| Name           | Description                                                                                                              |
 | 
						||
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
 | 
						||
| `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                        |
 | 
						||
| _keyword-only_ |                                                                                                                          |
 | 
						||
| `drop`         | The dropout rate. ~~float~~                                                                                              |
 | 
						||
| `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~            |
 | 
						||
| `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
 | 
						||
| **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                    |
 | 
						||
 | 
						||
## TrainablePipe.rehearse {id="rehearse",tag="method,experimental",version="3"}
 | 
						||
 | 
						||
Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the
 | 
						||
current model to make predictions similar to an initial model, to try to address
 | 
						||
the "catastrophic forgetting" problem. This feature is experimental.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> pipe = nlp.add_pipe("your_custom_pipe")
 | 
						||
> optimizer = nlp.resume_training()
 | 
						||
> losses = pipe.rehearse(examples, sgd=optimizer)
 | 
						||
> ```
 | 
						||
 | 
						||
| Name           | Description                                                                                                              |
 | 
						||
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
 | 
						||
| `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                        |
 | 
						||
| _keyword-only_ |                                                                                                                          |
 | 
						||
| `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~            |
 | 
						||
| `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
 | 
						||
| **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                    |
 | 
						||
 | 
						||
## TrainablePipe.get_loss {id="get_loss",tag="method"}
 | 
						||
 | 
						||
Find the loss and gradient of loss for the batch of documents and their
 | 
						||
predicted scores.
 | 
						||
 | 
						||
<Infobox variant="danger">
 | 
						||
 | 
						||
This method needs to be overwritten with your own custom `get_loss` method.
 | 
						||
 | 
						||
</Infobox>
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> ner = nlp.add_pipe("ner")
 | 
						||
> scores = ner.predict([eg.predicted for eg in examples])
 | 
						||
> loss, d_loss = ner.get_loss(examples, scores)
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Description                                                                 |
 | 
						||
| ----------- | --------------------------------------------------------------------------- |
 | 
						||
| `examples`  | The batch of examples. ~~Iterable[Example]~~                                |
 | 
						||
| `scores`    | Scores representing the model's predictions.                                |
 | 
						||
| **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ |
 | 
						||
 | 
						||
## TrainablePipe.score {id="score",tag="method",version="3"}
 | 
						||
 | 
						||
Score a batch of examples.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> scores = pipe.score(examples)
 | 
						||
> ```
 | 
						||
 | 
						||
| Name           | Description                                                                                             |
 | 
						||
| -------------- | ------------------------------------------------------------------------------------------------------- |
 | 
						||
| `examples`     | The examples to score. ~~Iterable[Example]~~                                                            |
 | 
						||
| _keyword-only_ |
 | 
						||
| `\*\*kwargs`   | Any additional settings to pass on to the scorer. ~~Any~~                                               |
 | 
						||
| **RETURNS**    | The scores, e.g. produced by the [`Scorer`](/api/scorer). ~~Dict[str, Union[float, Dict[str, float]]]~~ |
 | 
						||
 | 
						||
## TrainablePipe.create_optimizer {id="create_optimizer",tag="method"}
 | 
						||
 | 
						||
Create an optimizer for the pipeline component. Defaults to
 | 
						||
[`Adam`](https://thinc.ai/docs/api-optimizers#adam) with default settings.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> pipe = nlp.add_pipe("your_custom_pipe")
 | 
						||
> optimizer = pipe.create_optimizer()
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Description                  |
 | 
						||
| ----------- | ---------------------------- |
 | 
						||
| **RETURNS** | The optimizer. ~~Optimizer~~ |
 | 
						||
 | 
						||
## TrainablePipe.use_params {id="use_params",tag="method, contextmanager"}
 | 
						||
 | 
						||
Modify the pipe's model, to use the given parameter values. At the end of the
 | 
						||
context, the original parameters are restored.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> pipe = nlp.add_pipe("your_custom_pipe")
 | 
						||
> with pipe.use_params(optimizer.averages):
 | 
						||
>     pipe.to_disk("/best_model")
 | 
						||
> ```
 | 
						||
 | 
						||
| Name     | Description                                        |
 | 
						||
| -------- | -------------------------------------------------- |
 | 
						||
| `params` | The parameter values to use in the model. ~~dict~~ |
 | 
						||
 | 
						||
## TrainablePipe.finish_update {id="finish_update",tag="method"}
 | 
						||
 | 
						||
Update parameters using the current parameter gradients. Defaults to calling
 | 
						||
[`self.model.finish_update`](https://thinc.ai/docs/api-model#finish_update).
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> pipe = nlp.add_pipe("your_custom_pipe")
 | 
						||
> optimizer = nlp.initialize()
 | 
						||
> losses = pipe.update(examples, sgd=None)
 | 
						||
> pipe.finish_update(sgd)
 | 
						||
> ```
 | 
						||
 | 
						||
| Name  | Description                           |
 | 
						||
| ----- | ------------------------------------- |
 | 
						||
| `sgd` | An optimizer. ~~Optional[Optimizer]~~ |
 | 
						||
 | 
						||
## TrainablePipe.add_label {id="add_label",tag="method"}
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> pipe = nlp.add_pipe("your_custom_pipe")
 | 
						||
> pipe.add_label("MY_LABEL")
 | 
						||
> ```
 | 
						||
 | 
						||
Add a new label to the pipe, to be predicted by the model. The actual
 | 
						||
implementation depends on the specific component, but in general `add_label`
 | 
						||
shouldn't be called if the output dimension is already set, or if the model has
 | 
						||
already been fully [initialized](#initialize). If these conditions are violated,
 | 
						||
the function will raise an Error. The exception to this rule is when the
 | 
						||
component is [resizable](#is_resizable), in which case
 | 
						||
[`set_output`](#set_output) should be called to ensure that the model is
 | 
						||
properly resized.
 | 
						||
 | 
						||
<Infobox variant="danger">
 | 
						||
 | 
						||
This method needs to be overwritten with your own custom `add_label` method.
 | 
						||
 | 
						||
</Infobox>
 | 
						||
 | 
						||
| Name        | Description                                             |
 | 
						||
| ----------- | ------------------------------------------------------- |
 | 
						||
| `label`     | The label to add. ~~str~~                               |
 | 
						||
| **RETURNS** | 0 if the label is already present, otherwise 1. ~~int~~ |
 | 
						||
 | 
						||
Note that in general, you don't have to call `pipe.add_label` if you provide a
 | 
						||
representative data sample to the [`initialize`](#initialize) method. In this
 | 
						||
case, all labels found in the sample will be automatically added to the model,
 | 
						||
and the output dimension will be
 | 
						||
[inferred](/usage/layers-architectures#thinc-shape-inference) automatically.
 | 
						||
 | 
						||
## TrainablePipe.is_resizable {id="is_resizable",tag="property"}
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> can_resize = pipe.is_resizable
 | 
						||
> ```
 | 
						||
>
 | 
						||
> With custom resizing implemented by a component:
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> def custom_resize(model, new_nO):
 | 
						||
>     # adjust model
 | 
						||
>     return model
 | 
						||
>
 | 
						||
> custom_model.attrs["resize_output"] = custom_resize
 | 
						||
> ```
 | 
						||
 | 
						||
Check whether or not the output dimension of the component's model can be
 | 
						||
resized. If this method returns `True`, [`set_output`](#set_output) can be
 | 
						||
called to change the model's output dimension.
 | 
						||
 | 
						||
For built-in components that are not resizable, you have to create and train a
 | 
						||
new model from scratch with the appropriate architecture and output dimension.
 | 
						||
For custom components, you can implement a `resize_output` function and add it
 | 
						||
as an attribute to the component's model.
 | 
						||
 | 
						||
| Name        | Description                                                                                    |
 | 
						||
| ----------- | ---------------------------------------------------------------------------------------------- |
 | 
						||
| **RETURNS** | Whether or not the output dimension of the model can be changed after initialization. ~~bool~~ |
 | 
						||
 | 
						||
## TrainablePipe.set_output {id="set_output",tag="method"}
 | 
						||
 | 
						||
Change the output dimension of the component's model. If the component is not
 | 
						||
[resizable](#is_resizable), this method will raise a `NotImplementedError`. If a
 | 
						||
component is resizable, the model's attribute `resize_output` will be called.
 | 
						||
This is a function that takes the original model and the new output dimension
 | 
						||
`nO`, and changes the model in place. When resizing an already trained model,
 | 
						||
care should be taken to avoid the "catastrophic forgetting" problem.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> if pipe.is_resizable:
 | 
						||
>     pipe.set_output(512)
 | 
						||
> ```
 | 
						||
 | 
						||
| Name | Description                       |
 | 
						||
| ---- | --------------------------------- |
 | 
						||
| `nO` | The new output dimension. ~~int~~ |
 | 
						||
 | 
						||
## TrainablePipe.to_disk {id="to_disk",tag="method"}
 | 
						||
 | 
						||
Serialize the pipe to disk.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> pipe = nlp.add_pipe("your_custom_pipe")
 | 
						||
> pipe.to_disk("/path/to/pipe")
 | 
						||
> ```
 | 
						||
 | 
						||
| Name           | Description                                                                                                                                |
 | 
						||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | 
						||
| `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | 
						||
| _keyword-only_ |                                                                                                                                            |
 | 
						||
| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | 
						||
 | 
						||
## TrainablePipe.from_disk {id="from_disk",tag="method"}
 | 
						||
 | 
						||
Load the pipe from disk. Modifies the object in place and returns it.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> pipe = nlp.add_pipe("your_custom_pipe")
 | 
						||
> pipe.from_disk("/path/to/pipe")
 | 
						||
> ```
 | 
						||
 | 
						||
| Name           | Description                                                                                     |
 | 
						||
| -------------- | ----------------------------------------------------------------------------------------------- |
 | 
						||
| `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | 
						||
| _keyword-only_ |                                                                                                 |
 | 
						||
| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | 
						||
| **RETURNS**    | The modified pipe. ~~TrainablePipe~~                                                            |
 | 
						||
 | 
						||
## TrainablePipe.to_bytes {id="to_bytes",tag="method"}
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> pipe = nlp.add_pipe("your_custom_pipe")
 | 
						||
> pipe_bytes = pipe.to_bytes()
 | 
						||
> ```
 | 
						||
 | 
						||
Serialize the pipe to a bytestring.
 | 
						||
 | 
						||
| Name           | Description                                                                                 |
 | 
						||
| -------------- | ------------------------------------------------------------------------------------------- |
 | 
						||
| _keyword-only_ |                                                                                             |
 | 
						||
| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | 
						||
| **RETURNS**    | The serialized form of the pipe. ~~bytes~~                                                  |
 | 
						||
 | 
						||
## TrainablePipe.from_bytes {id="from_bytes",tag="method"}
 | 
						||
 | 
						||
Load the pipe from a bytestring. Modifies the object in place and returns it.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> pipe_bytes = pipe.to_bytes()
 | 
						||
> pipe = nlp.add_pipe("your_custom_pipe")
 | 
						||
> pipe.from_bytes(pipe_bytes)
 | 
						||
> ```
 | 
						||
 | 
						||
| Name           | Description                                                                                 |
 | 
						||
| -------------- | ------------------------------------------------------------------------------------------- |
 | 
						||
| `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | 
						||
| _keyword-only_ |                                                                                             |
 | 
						||
| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | 
						||
| **RETURNS**    | The pipe. ~~TrainablePipe~~                                                                 |
 | 
						||
 | 
						||
## Attributes {id="attributes"}
 | 
						||
 | 
						||
| Name    | Description                                                                                                                       |
 | 
						||
| ------- | --------------------------------------------------------------------------------------------------------------------------------- |
 | 
						||
| `vocab` | The shared vocabulary that's passed in on initialization. ~~Vocab~~                                                               |
 | 
						||
| `model` | The model powering the component. ~~Model[List[Doc], Any]~~                                                                       |
 | 
						||
| `name`  | The name of the component instance in the pipeline. Can be used in the losses. ~~str~~                                            |
 | 
						||
| `cfg`   | Keyword arguments passed to [`TrainablePipe.__init__`](/api/pipe#init). Will be serialized with the component. ~~Dict[str, Any]~~ |
 | 
						||
 | 
						||
## Serialization fields {id="serialization-fields"}
 | 
						||
 | 
						||
During serialization, spaCy will export several data fields used to restore
 | 
						||
different aspects of the object. If needed, you can exclude them from
 | 
						||
serialization by passing in the string names via the `exclude` argument.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> data = pipe.to_disk("/path")
 | 
						||
> ```
 | 
						||
 | 
						||
| Name    | Description                                                    |
 | 
						||
| ------- | -------------------------------------------------------------- |
 | 
						||
| `cfg`   | The config file. You usually don't want to exclude this.       |
 | 
						||
| `model` | The binary model data. You usually don't want to exclude this. |
 |