mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			208 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			208 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						||
title: GoldParse
 | 
						||
teaser: A collection for training annotations
 | 
						||
tag: class
 | 
						||
source: spacy/gold.pyx
 | 
						||
---
 | 
						||
 | 
						||
## GoldParse.\_\_init\_\_ {#init tag="method"}
 | 
						||
 | 
						||
Create a `GoldParse`. Unlike annotations in `entities`, label annotations in
 | 
						||
`cats` can overlap, i.e. a single word can be covered by multiple labelled
 | 
						||
spans. The [`TextCategorizer`](/api/textcategorizer) component expects true
 | 
						||
examples of a label to have the value `1.0`, and negative examples of a label to
 | 
						||
have the value `0.0`. Labels not in the dictionary are treated as missing – the
 | 
						||
gradient for those labels will be zero.
 | 
						||
 | 
						||
| Name        | Type        | Description                                                                                                                                                                                                                            |
 | 
						||
| ----------- | ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						||
| `doc`       | `Doc`       | The document the annotations refer to.                                                                                                                                                                                                 |
 | 
						||
| `words`     | iterable    | A sequence of unicode word strings.                                                                                                                                                                                                    |
 | 
						||
| `tags`      | iterable    | A sequence of strings, representing tag annotations.                                                                                                                                                                                   |
 | 
						||
| `heads`     | iterable    | A sequence of integers, representing syntactic head offsets.                                                                                                                                                                           |
 | 
						||
| `deps`      | iterable    | A sequence of strings, representing the syntactic relation types.                                                                                                                                                                      |
 | 
						||
| `entities`  | iterable    | A sequence of named entity annotations, either as BILUO tag strings, or as `(start_char, end_char, label)` tuples, representing the entity positions. If BILUO tag strings, you can specify missing values by setting the tag to None. |
 | 
						||
| `cats`      | dict        | Labels for text classification. Each key in the dictionary may be a string or an int, or a `(start_char, end_char, label)` tuple, indicating that the label is applied to only part of the document (usually a sentence).              |
 | 
						||
| `links`     | dict        | Labels for entity linking. A dict with `(start_char, end_char)` keys, and the values being dicts with `kb_id:value` entries, representing external KB IDs mapped to either 1.0 (positive) or 0.0 (negative).                           |
 | 
						||
| **RETURNS** | `GoldParse` | The newly constructed object.                                                                                                                                                                                                          |
 | 
						||
 | 
						||
## GoldParse.\_\_len\_\_ {#len tag="method"}
 | 
						||
 | 
						||
Get the number of gold-standard tokens.
 | 
						||
 | 
						||
| Name        | Type | Description                         |
 | 
						||
| ----------- | ---- | ----------------------------------- |
 | 
						||
| **RETURNS** | int  | The number of gold-standard tokens. |
 | 
						||
 | 
						||
## GoldParse.is_projective {#is_projective tag="property"}
 | 
						||
 | 
						||
Whether the provided syntactic annotations form a projective dependency tree.
 | 
						||
 | 
						||
| Name        | Type | Description                               |
 | 
						||
| ----------- | ---- | ----------------------------------------- |
 | 
						||
| **RETURNS** | bool | Whether annotations form projective tree. |
 | 
						||
 | 
						||
## Attributes {#attributes}
 | 
						||
 | 
						||
| Name                                 | Type | Description                                                                                                                                              |
 | 
						||
| ------------------------------------ | ---- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						||
| `words`                              | list | The words.                                                                                                                                               |
 | 
						||
| `tags`                               | list | The part-of-speech tag annotations.                                                                                                                      |
 | 
						||
| `heads`                              | list | The syntactic head annotations.                                                                                                                          |
 | 
						||
| `labels`                             | list | The syntactic relation-type annotations.                                                                                                                 |
 | 
						||
| `ner`                                | list | The named entity annotations as BILUO tags.                                                                                                              |
 | 
						||
| `cand_to_gold`                       | list | The alignment from candidate tokenization to gold tokenization.                                                                                          |
 | 
						||
| `gold_to_cand`                       | list | The alignment from gold tokenization to candidate tokenization.                                                                                          |
 | 
						||
| `cats` <Tag variant="new">2</Tag>    | list | Entries in the list should be either a label, or a `(start, end, label)` triple. The tuple form is used for categories applied to spans of the document. |
 | 
						||
| `links` <Tag variant="new">2.2</Tag> | dict | Keys in the dictionary are `(start_char, end_char)` triples, and the values are dictionaries with `kb_id:value` entries.                                 |
 | 
						||
 | 
						||
## Utilities {#util}
 | 
						||
 | 
						||
### gold.docs_to_json {#docs_to_json tag="function"}
 | 
						||
 | 
						||
Convert a list of Doc objects into the
 | 
						||
[JSON-serializable format](/api/annotation#json-input) used by the
 | 
						||
[`spacy train`](/api/cli#train) command. Each input doc will be treated as a 'paragraph' in the output doc.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> from spacy.gold import docs_to_json
 | 
						||
>
 | 
						||
> doc = nlp("I like London")
 | 
						||
> json_data = docs_to_json([doc])
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Type             | Description                                |
 | 
						||
| ----------- | ---------------- | ------------------------------------------ |
 | 
						||
| `docs`      | iterable / `Doc` | The `Doc` object(s) to convert.            |
 | 
						||
| `id`        | int              | ID to assign to the JSON. Defaults to `0`. |
 | 
						||
| **RETURNS** | dict             | The data in spaCy's JSON format.           |
 | 
						||
 | 
						||
### gold.align {#align tag="function"}
 | 
						||
 | 
						||
Calculate alignment tables between two tokenizations, using the Levenshtein
 | 
						||
algorithm. The alignment is case-insensitive.
 | 
						||
 | 
						||
<Infobox title="Important note" variant="warning">
 | 
						||
 | 
						||
The current implementation of the alignment algorithm assumes that both
 | 
						||
tokenizations add up to the same string. For example, you'll be able to align
 | 
						||
`["I", "'", "m"]` and `["I", "'m"]`, which both add up to `"I'm"`, but not
 | 
						||
`["I", "'m"]` and `["I", "am"]`.
 | 
						||
 | 
						||
</Infobox>
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> from spacy.gold import align
 | 
						||
>
 | 
						||
> bert_tokens = ["obama", "'", "s", "podcast"]
 | 
						||
> spacy_tokens = ["obama", "'s", "podcast"]
 | 
						||
> alignment = align(bert_tokens, spacy_tokens)
 | 
						||
> cost, a2b, b2a, a2b_multi, b2a_multi = alignment
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Type  | Description                                                                |
 | 
						||
| ----------- | ----- | -------------------------------------------------------------------------- |
 | 
						||
| `tokens_a`  | list  | String values of candidate tokens to align.                                |
 | 
						||
| `tokens_b`  | list  | String values of reference tokens to align.                                |
 | 
						||
| **RETURNS** | tuple | A `(cost, a2b, b2a, a2b_multi, b2a_multi)` tuple describing the alignment. |
 | 
						||
 | 
						||
The returned tuple contains the following alignment information:
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> a2b = array([0, -1, -1, 2])
 | 
						||
> b2a = array([0, 2, 3])
 | 
						||
> a2b_multi = {1: 1, 2: 1}
 | 
						||
> b2a_multi = {}
 | 
						||
> ```
 | 
						||
>
 | 
						||
> If `a2b[3] == 2`, that means that `tokens_a[3]` aligns to `tokens_b[2]`. If
 | 
						||
> there's no one-to-one alignment for a token, it has the value `-1`.
 | 
						||
 | 
						||
| Name        | Type                                   | Description                                                                                                                                     |
 | 
						||
| ----------- | -------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						||
| `cost`      | int                                    | The number of misaligned tokens.                                                                                                                |
 | 
						||
| `a2b`       | `numpy.ndarray[ndim=1, dtype='int32']` | One-to-one mappings of indices in `tokens_a` to indices in `tokens_b`.                                                                          |
 | 
						||
| `b2a`       | `numpy.ndarray[ndim=1, dtype='int32']` | One-to-one mappings of indices in `tokens_b` to indices in `tokens_a`.                                                                          |
 | 
						||
| `a2b_multi` | dict                                   | A dictionary mapping indices in `tokens_a` to indices in `tokens_b`, where multiple tokens of `tokens_a` align to the same token of `tokens_b`. |
 | 
						||
| `b2a_multi` | dict                                   | A dictionary mapping indices in `tokens_b` to indices in `tokens_a`, where multiple tokens of `tokens_b` align to the same token of `tokens_a`. |
 | 
						||
 | 
						||
### gold.biluo_tags_from_offsets {#biluo_tags_from_offsets tag="function"}
 | 
						||
 | 
						||
Encode labelled spans into per-token tags, using the
 | 
						||
[BILUO scheme](/api/annotation#biluo) (Begin, In, Last, Unit, Out). Returns a
 | 
						||
list of unicode strings, describing the tags. Each tag string will be of the
 | 
						||
form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of
 | 
						||
`"B"`, `"I"`, `"L"`, `"U"`. The string `"-"` is used where the entity offsets
 | 
						||
don't align with the tokenization in the `Doc` object. The training algorithm
 | 
						||
will view these as missing values. `O` denotes a non-entity token. `B` denotes
 | 
						||
the beginning of a multi-token entity, `I` the inside of an entity of three or
 | 
						||
more tokens, and `L` the end of an entity of two or more tokens. `U` denotes a
 | 
						||
single-token entity.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> from spacy.gold import biluo_tags_from_offsets
 | 
						||
>
 | 
						||
> doc = nlp("I like London.")
 | 
						||
> entities = [(7, 13, "LOC")]
 | 
						||
> tags = biluo_tags_from_offsets(doc, entities)
 | 
						||
> assert tags == ["O", "O", "U-LOC", "O"]
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Type     | Description                                                                                                                                     |
 | 
						||
| ----------- | -------- | ----------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						||
| `doc`       | `Doc`    | The document that the entity offsets refer to. The output tags will refer to the token boundaries within the document.                          |
 | 
						||
| `entities`  | iterable | A sequence of `(start, end, label)` triples. `start` and `end` should be character-offset integers denoting the slice into the original string. |
 | 
						||
| **RETURNS** | list     | Unicode strings, describing the [BILUO](/api/annotation#biluo) tags.                                                                            |
 | 
						||
 | 
						||
### gold.offsets_from_biluo_tags {#offsets_from_biluo_tags tag="function"}
 | 
						||
 | 
						||
Encode per-token tags following the [BILUO scheme](/api/annotation#biluo) into
 | 
						||
entity offsets.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> from spacy.gold import offsets_from_biluo_tags
 | 
						||
>
 | 
						||
> doc = nlp("I like London.")
 | 
						||
> tags = ["O", "O", "U-LOC", "O"]
 | 
						||
> entities = offsets_from_biluo_tags(doc, tags)
 | 
						||
> assert entities == [(7, 13, "LOC")]
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Type     | Description                                                                                                                                                                                                                 |
 | 
						||
| ----------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						||
| `doc`       | `Doc`    | The document that the BILUO tags refer to.                                                                                                                                                                                  |
 | 
						||
| `entities`  | iterable | A sequence of [BILUO](/api/annotation#biluo) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. |
 | 
						||
| **RETURNS** | list     | A sequence of `(start, end, label)` triples. `start` and `end` will be character-offset integers denoting the slice into the original string.                                                                               |
 | 
						||
 | 
						||
### gold.spans_from_biluo_tags {#spans_from_biluo_tags tag="function" new="2.1"}
 | 
						||
 | 
						||
Encode per-token tags following the [BILUO scheme](/api/annotation#biluo) into
 | 
						||
[`Span`](/api/span) objects. This can be used to create entity spans from
 | 
						||
token-based tags, e.g. to overwrite the `doc.ents`.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> from spacy.gold import spans_from_biluo_tags
 | 
						||
>
 | 
						||
> doc = nlp("I like London.")
 | 
						||
> tags = ["O", "O", "U-LOC", "O"]
 | 
						||
> doc.ents = spans_from_biluo_tags(doc, tags)
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Type     | Description                                                                                                                                                                                                                 |
 | 
						||
| ----------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						||
| `doc`       | `Doc`    | The document that the BILUO tags refer to.                                                                                                                                                                                  |
 | 
						||
| `entities`  | iterable | A sequence of [BILUO](/api/annotation#biluo) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. |
 | 
						||
| **RETURNS** | list     | A sequence of `Span` objects with added entity labels.                                                                                                                                                                      |
 |