mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Add a `spacy evaluate speed` subcommand This subcommand reports the mean batch performance of a model on a data set with a 95% confidence interval. For reliability, it first performs some warmup rounds. Then it will measure performance on batches with randomly shuffled documents. To avoid having too many spaCy commands, `speed` is a subcommand of `evaluate` and accuracy evaluation is moved to its own `evaluate accuracy` subcommand. * Fix import cycle * Restore `spacy evaluate`, make `spacy benchmark speed` an alias * Add documentation for `spacy benchmark` * CREATES -> PRINTS * WPS -> words/s * Disable formatting of benchmark speed arguments * Fail with an error message when trying to speed bench empty corpus * Make it clearer that `benchmark accuracy` is a replacement for `evaluate` * Fix docstring webpage reference * tests: check `evaluate` output against `benchmark accuracy`
		
			
				
	
	
		
			229 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			229 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import Optional, List, Dict, Any, Union
 | 
						|
from wasabi import Printer
 | 
						|
from pathlib import Path
 | 
						|
import re
 | 
						|
import srsly
 | 
						|
from thinc.api import fix_random_seed
 | 
						|
 | 
						|
from ..training import Corpus
 | 
						|
from ..tokens import Doc
 | 
						|
from ._util import app, Arg, Opt, setup_gpu, import_code, benchmark_cli
 | 
						|
from ..scorer import Scorer
 | 
						|
from .. import util
 | 
						|
from .. import displacy
 | 
						|
 | 
						|
 | 
						|
@benchmark_cli.command(
 | 
						|
    "accuracy",
 | 
						|
)
 | 
						|
@app.command("evaluate")
 | 
						|
def evaluate_cli(
 | 
						|
    # fmt: off
 | 
						|
    model: str = Arg(..., help="Model name or path"),
 | 
						|
    data_path: Path = Arg(..., help="Location of binary evaluation data in .spacy format", exists=True),
 | 
						|
    output: Optional[Path] = Opt(None, "--output", "-o", help="Output JSON file for metrics", dir_okay=False),
 | 
						|
    code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
 | 
						|
    use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
 | 
						|
    gold_preproc: bool = Opt(False, "--gold-preproc", "-G", help="Use gold preprocessing"),
 | 
						|
    displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False),
 | 
						|
    displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"),
 | 
						|
    # fmt: on
 | 
						|
):
 | 
						|
    """
 | 
						|
    Evaluate a trained pipeline. Expects a loadable spaCy pipeline and evaluation
 | 
						|
    data in the binary .spacy format. The --gold-preproc option sets up the
 | 
						|
    evaluation examples with gold-standard sentences and tokens for the
 | 
						|
    predictions. Gold preprocessing helps the annotations align to the
 | 
						|
    tokenization, and may result in sequences of more consistent length. However,
 | 
						|
    it may reduce runtime accuracy due to train/test skew. To render a sample of
 | 
						|
    dependency parses in a HTML file, set as output directory as the
 | 
						|
    displacy_path argument.
 | 
						|
 | 
						|
    DOCS: https://spacy.io/api/cli#benchmark-accuracy
 | 
						|
    """
 | 
						|
    import_code(code_path)
 | 
						|
    evaluate(
 | 
						|
        model,
 | 
						|
        data_path,
 | 
						|
        output=output,
 | 
						|
        use_gpu=use_gpu,
 | 
						|
        gold_preproc=gold_preproc,
 | 
						|
        displacy_path=displacy_path,
 | 
						|
        displacy_limit=displacy_limit,
 | 
						|
        silent=False,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def evaluate(
 | 
						|
    model: str,
 | 
						|
    data_path: Path,
 | 
						|
    output: Optional[Path] = None,
 | 
						|
    use_gpu: int = -1,
 | 
						|
    gold_preproc: bool = False,
 | 
						|
    displacy_path: Optional[Path] = None,
 | 
						|
    displacy_limit: int = 25,
 | 
						|
    silent: bool = True,
 | 
						|
    spans_key: str = "sc",
 | 
						|
) -> Dict[str, Any]:
 | 
						|
    msg = Printer(no_print=silent, pretty=not silent)
 | 
						|
    fix_random_seed()
 | 
						|
    setup_gpu(use_gpu, silent=silent)
 | 
						|
    data_path = util.ensure_path(data_path)
 | 
						|
    output_path = util.ensure_path(output)
 | 
						|
    displacy_path = util.ensure_path(displacy_path)
 | 
						|
    if not data_path.exists():
 | 
						|
        msg.fail("Evaluation data not found", data_path, exits=1)
 | 
						|
    if displacy_path and not displacy_path.exists():
 | 
						|
        msg.fail("Visualization output directory not found", displacy_path, exits=1)
 | 
						|
    corpus = Corpus(data_path, gold_preproc=gold_preproc)
 | 
						|
    nlp = util.load_model(model)
 | 
						|
    dev_dataset = list(corpus(nlp))
 | 
						|
    scores = nlp.evaluate(dev_dataset)
 | 
						|
    metrics = {
 | 
						|
        "TOK": "token_acc",
 | 
						|
        "TAG": "tag_acc",
 | 
						|
        "POS": "pos_acc",
 | 
						|
        "MORPH": "morph_acc",
 | 
						|
        "LEMMA": "lemma_acc",
 | 
						|
        "UAS": "dep_uas",
 | 
						|
        "LAS": "dep_las",
 | 
						|
        "NER P": "ents_p",
 | 
						|
        "NER R": "ents_r",
 | 
						|
        "NER F": "ents_f",
 | 
						|
        "TEXTCAT": "cats_score",
 | 
						|
        "SENT P": "sents_p",
 | 
						|
        "SENT R": "sents_r",
 | 
						|
        "SENT F": "sents_f",
 | 
						|
        "SPAN P": f"spans_{spans_key}_p",
 | 
						|
        "SPAN R": f"spans_{spans_key}_r",
 | 
						|
        "SPAN F": f"spans_{spans_key}_f",
 | 
						|
        "SPEED": "speed",
 | 
						|
    }
 | 
						|
    results = {}
 | 
						|
    data = {}
 | 
						|
    for metric, key in metrics.items():
 | 
						|
        if key in scores:
 | 
						|
            if key == "cats_score":
 | 
						|
                metric = metric + " (" + scores.get("cats_score_desc", "unk") + ")"
 | 
						|
            if isinstance(scores[key], (int, float)):
 | 
						|
                if key == "speed":
 | 
						|
                    results[metric] = f"{scores[key]:.0f}"
 | 
						|
                else:
 | 
						|
                    results[metric] = f"{scores[key]*100:.2f}"
 | 
						|
            else:
 | 
						|
                results[metric] = "-"
 | 
						|
            data[re.sub(r"[\s/]", "_", key.lower())] = scores[key]
 | 
						|
 | 
						|
    msg.table(results, title="Results")
 | 
						|
    data = handle_scores_per_type(scores, data, spans_key=spans_key, silent=silent)
 | 
						|
 | 
						|
    if displacy_path:
 | 
						|
        factory_names = [nlp.get_pipe_meta(pipe).factory for pipe in nlp.pipe_names]
 | 
						|
        docs = list(nlp.pipe(ex.reference.text for ex in dev_dataset[:displacy_limit]))
 | 
						|
        render_deps = "parser" in factory_names
 | 
						|
        render_ents = "ner" in factory_names
 | 
						|
        render_parses(
 | 
						|
            docs,
 | 
						|
            displacy_path,
 | 
						|
            model_name=model,
 | 
						|
            limit=displacy_limit,
 | 
						|
            deps=render_deps,
 | 
						|
            ents=render_ents,
 | 
						|
        )
 | 
						|
        msg.good(f"Generated {displacy_limit} parses as HTML", displacy_path)
 | 
						|
 | 
						|
    if output_path is not None:
 | 
						|
        srsly.write_json(output_path, data)
 | 
						|
        msg.good(f"Saved results to {output_path}")
 | 
						|
    return data
 | 
						|
 | 
						|
 | 
						|
def handle_scores_per_type(
 | 
						|
    scores: Dict[str, Any],
 | 
						|
    data: Dict[str, Any] = {},
 | 
						|
    *,
 | 
						|
    spans_key: str = "sc",
 | 
						|
    silent: bool = False,
 | 
						|
) -> Dict[str, Any]:
 | 
						|
    msg = Printer(no_print=silent, pretty=not silent)
 | 
						|
    if "morph_per_feat" in scores:
 | 
						|
        if scores["morph_per_feat"]:
 | 
						|
            print_prf_per_type(msg, scores["morph_per_feat"], "MORPH", "feat")
 | 
						|
            data["morph_per_feat"] = scores["morph_per_feat"]
 | 
						|
    if "dep_las_per_type" in scores:
 | 
						|
        if scores["dep_las_per_type"]:
 | 
						|
            print_prf_per_type(msg, scores["dep_las_per_type"], "LAS", "type")
 | 
						|
            data["dep_las_per_type"] = scores["dep_las_per_type"]
 | 
						|
    if "ents_per_type" in scores:
 | 
						|
        if scores["ents_per_type"]:
 | 
						|
            print_prf_per_type(msg, scores["ents_per_type"], "NER", "type")
 | 
						|
            data["ents_per_type"] = scores["ents_per_type"]
 | 
						|
    if f"spans_{spans_key}_per_type" in scores:
 | 
						|
        if scores[f"spans_{spans_key}_per_type"]:
 | 
						|
            print_prf_per_type(
 | 
						|
                msg, scores[f"spans_{spans_key}_per_type"], "SPANS", "type"
 | 
						|
            )
 | 
						|
            data[f"spans_{spans_key}_per_type"] = scores[f"spans_{spans_key}_per_type"]
 | 
						|
    if "cats_f_per_type" in scores:
 | 
						|
        if scores["cats_f_per_type"]:
 | 
						|
            print_prf_per_type(msg, scores["cats_f_per_type"], "Textcat F", "label")
 | 
						|
            data["cats_f_per_type"] = scores["cats_f_per_type"]
 | 
						|
    if "cats_auc_per_type" in scores:
 | 
						|
        if scores["cats_auc_per_type"]:
 | 
						|
            print_textcats_auc_per_cat(msg, scores["cats_auc_per_type"])
 | 
						|
            data["cats_auc_per_type"] = scores["cats_auc_per_type"]
 | 
						|
    return scores
 | 
						|
 | 
						|
 | 
						|
def render_parses(
 | 
						|
    docs: List[Doc],
 | 
						|
    output_path: Path,
 | 
						|
    model_name: str = "",
 | 
						|
    limit: int = 250,
 | 
						|
    deps: bool = True,
 | 
						|
    ents: bool = True,
 | 
						|
):
 | 
						|
    docs[0].user_data["title"] = model_name
 | 
						|
    if ents:
 | 
						|
        html = displacy.render(docs[:limit], style="ent", page=True)
 | 
						|
        with (output_path / "entities.html").open("w", encoding="utf8") as file_:
 | 
						|
            file_.write(html)
 | 
						|
    if deps:
 | 
						|
        html = displacy.render(
 | 
						|
            docs[:limit], style="dep", page=True, options={"compact": True}
 | 
						|
        )
 | 
						|
        with (output_path / "parses.html").open("w", encoding="utf8") as file_:
 | 
						|
            file_.write(html)
 | 
						|
 | 
						|
 | 
						|
def print_prf_per_type(
 | 
						|
    msg: Printer, scores: Dict[str, Dict[str, float]], name: str, type: str
 | 
						|
) -> None:
 | 
						|
    data = []
 | 
						|
    for key, value in scores.items():
 | 
						|
        row = [key]
 | 
						|
        for k in ("p", "r", "f"):
 | 
						|
            v = value[k]
 | 
						|
            row.append(f"{v * 100:.2f}" if isinstance(v, (int, float)) else v)
 | 
						|
        data.append(row)
 | 
						|
    msg.table(
 | 
						|
        data,
 | 
						|
        header=("", "P", "R", "F"),
 | 
						|
        aligns=("l", "r", "r", "r"),
 | 
						|
        title=f"{name} (per {type})",
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def print_textcats_auc_per_cat(
 | 
						|
    msg: Printer, scores: Dict[str, Dict[str, float]]
 | 
						|
) -> None:
 | 
						|
    msg.table(
 | 
						|
        [
 | 
						|
            (k, f"{v:.2f}" if isinstance(v, (float, int)) else v)
 | 
						|
            for k, v in scores.items()
 | 
						|
        ],
 | 
						|
        header=("", "ROC AUC"),
 | 
						|
        aligns=("l", "r"),
 | 
						|
        title="Textcat ROC AUC (per label)",
 | 
						|
    )
 |