mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	* Raise an error for textcat with <2 labels Raise an error if initializing a `textcat` component without at least two labels. * Add similar note to docs * Update positive_label description in API docs
		
			
				
	
	
		
			547 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			547 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| import random
 | |
| import numpy.random
 | |
| from numpy.testing import assert_almost_equal
 | |
| from thinc.api import fix_random_seed
 | |
| from spacy import util
 | |
| from spacy.lang.en import English
 | |
| from spacy.language import Language
 | |
| from spacy.pipeline import TextCategorizer
 | |
| from spacy.tokens import Doc
 | |
| from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
 | |
| from spacy.scorer import Scorer
 | |
| from spacy.training import Example
 | |
| 
 | |
| from ..util import make_tempdir
 | |
| 
 | |
| 
 | |
| TRAIN_DATA_SINGLE_LABEL = [
 | |
|     ("I'm so happy.", {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}),
 | |
|     ("I'm so angry", {"cats": {"POSITIVE": 0.0, "NEGATIVE": 1.0}}),
 | |
| ]
 | |
| 
 | |
| TRAIN_DATA_MULTI_LABEL = [
 | |
|     ("I'm angry and confused", {"cats": {"ANGRY": 1.0, "CONFUSED": 1.0, "HAPPY": 0.0}}),
 | |
|     ("I'm confused but happy", {"cats": {"ANGRY": 0.0, "CONFUSED": 1.0, "HAPPY": 1.0}}),
 | |
| ]
 | |
| 
 | |
| 
 | |
| def make_get_examples_single_label(nlp):
 | |
|     train_examples = []
 | |
|     for t in TRAIN_DATA_SINGLE_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | |
| 
 | |
|     def get_examples():
 | |
|         return train_examples
 | |
| 
 | |
|     return get_examples
 | |
| 
 | |
| 
 | |
| def make_get_examples_multi_label(nlp):
 | |
|     train_examples = []
 | |
|     for t in TRAIN_DATA_MULTI_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | |
| 
 | |
|     def get_examples():
 | |
|         return train_examples
 | |
| 
 | |
|     return get_examples
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(reason="Test is flakey when run with others")
 | |
| def test_simple_train():
 | |
|     nlp = Language()
 | |
|     textcat = nlp.add_pipe("textcat")
 | |
|     textcat.add_label("answer")
 | |
|     nlp.initialize()
 | |
|     for i in range(5):
 | |
|         for text, answer in [
 | |
|             ("aaaa", 1.0),
 | |
|             ("bbbb", 0),
 | |
|             ("aa", 1.0),
 | |
|             ("bbbbbbbbb", 0.0),
 | |
|             ("aaaaaa", 1),
 | |
|         ]:
 | |
|             nlp.update((text, {"cats": {"answer": answer}}))
 | |
|     doc = nlp("aaa")
 | |
|     assert "answer" in doc.cats
 | |
|     assert doc.cats["answer"] >= 0.5
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(reason="Test is flakey when run with others")
 | |
| def test_textcat_learns_multilabel():
 | |
|     random.seed(5)
 | |
|     numpy.random.seed(5)
 | |
|     docs = []
 | |
|     nlp = Language()
 | |
|     letters = ["a", "b", "c"]
 | |
|     for w1 in letters:
 | |
|         for w2 in letters:
 | |
|             cats = {letter: float(w2 == letter) for letter in letters}
 | |
|             docs.append((Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3), cats))
 | |
|     random.shuffle(docs)
 | |
|     textcat = TextCategorizer(nlp.vocab, width=8)
 | |
|     for letter in letters:
 | |
|         textcat.add_label(letter)
 | |
|     optimizer = textcat.initialize(lambda: [])
 | |
|     for i in range(30):
 | |
|         losses = {}
 | |
|         examples = [Example.from_dict(doc, {"cats": cats}) for doc, cat in docs]
 | |
|         textcat.update(examples, sgd=optimizer, losses=losses)
 | |
|         random.shuffle(docs)
 | |
|     for w1 in letters:
 | |
|         for w2 in letters:
 | |
|             doc = Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3)
 | |
|             truth = {letter: w2 == letter for letter in letters}
 | |
|             textcat(doc)
 | |
|             for cat, score in doc.cats.items():
 | |
|                 if not truth[cat]:
 | |
|                     assert score < 0.5
 | |
|                 else:
 | |
|                     assert score > 0.5
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("name", ["textcat", "textcat_multilabel"])
 | |
| def test_label_types(name):
 | |
|     nlp = Language()
 | |
|     textcat = nlp.add_pipe(name)
 | |
|     textcat.add_label("answer")
 | |
|     with pytest.raises(ValueError):
 | |
|         textcat.add_label(9)
 | |
|     # textcat requires at least two labels
 | |
|     if name == "textcat":
 | |
|         with pytest.raises(ValueError):
 | |
|             nlp.initialize()
 | |
|     else:
 | |
|         nlp.initialize()
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("name", ["textcat", "textcat_multilabel"])
 | |
| def test_no_label(name):
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe(name)
 | |
|     with pytest.raises(ValueError):
 | |
|         nlp.initialize()
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "name,get_examples",
 | |
|     [
 | |
|         ("textcat", make_get_examples_single_label),
 | |
|         ("textcat_multilabel", make_get_examples_multi_label),
 | |
|     ],
 | |
| )
 | |
| def test_implicit_label(name, get_examples):
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe(name)
 | |
|     nlp.initialize(get_examples=get_examples(nlp))
 | |
| 
 | |
| 
 | |
| # fmt: off
 | |
| @pytest.mark.parametrize(
 | |
|     "name,textcat_config",
 | |
|     [
 | |
|         # BOW
 | |
|         ("textcat", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}),
 | |
|         ("textcat", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
 | |
|         # ENSEMBLE
 | |
|         ("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}}),
 | |
|         ("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}}),
 | |
|         # CNN
 | |
|         ("textcat", {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
 | |
|     ],
 | |
| )
 | |
| # fmt: on
 | |
| def test_no_resize(name, textcat_config):
 | |
|     """The old textcat architectures weren't resizable"""
 | |
|     nlp = Language()
 | |
|     pipe_config = {"model": textcat_config}
 | |
|     textcat = nlp.add_pipe(name, config=pipe_config)
 | |
|     textcat.add_label("POSITIVE")
 | |
|     textcat.add_label("NEGATIVE")
 | |
|     nlp.initialize()
 | |
|     assert textcat.model.maybe_get_dim("nO") in [2, None]
 | |
|     # this throws an error because the textcat can't be resized after initialization
 | |
|     with pytest.raises(ValueError):
 | |
|         textcat.add_label("NEUTRAL")
 | |
| 
 | |
| 
 | |
| # fmt: off
 | |
| @pytest.mark.parametrize(
 | |
|     "name,textcat_config",
 | |
|     [
 | |
|         # BOW
 | |
|         ("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}),
 | |
|         ("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
 | |
|         # CNN
 | |
|         ("textcat", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
 | |
|     ],
 | |
| )
 | |
| # fmt: on
 | |
| def test_resize(name, textcat_config):
 | |
|     """The new textcat architectures are resizable"""
 | |
|     nlp = Language()
 | |
|     pipe_config = {"model": textcat_config}
 | |
|     textcat = nlp.add_pipe(name, config=pipe_config)
 | |
|     textcat.add_label("POSITIVE")
 | |
|     textcat.add_label("NEGATIVE")
 | |
|     assert textcat.model.maybe_get_dim("nO") in [2, None]
 | |
|     nlp.initialize()
 | |
|     assert textcat.model.maybe_get_dim("nO") in [2, None]
 | |
|     textcat.add_label("NEUTRAL")
 | |
|     assert textcat.model.maybe_get_dim("nO") in [3, None]
 | |
| 
 | |
| 
 | |
| # fmt: off
 | |
| @pytest.mark.parametrize(
 | |
|     "name,textcat_config",
 | |
|     [
 | |
|         # BOW
 | |
|         ("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}),
 | |
|         ("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
 | |
|         # CNN
 | |
|         ("textcat", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
 | |
|     ],
 | |
| )
 | |
| # fmt: on
 | |
| def test_resize_same_results(name, textcat_config):
 | |
|     # Ensure that the resized textcat classifiers still produce the same results for old labels
 | |
|     fix_random_seed(0)
 | |
|     nlp = English()
 | |
|     pipe_config = {"model": textcat_config}
 | |
|     textcat = nlp.add_pipe(name, config=pipe_config)
 | |
| 
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA_SINGLE_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     assert textcat.model.maybe_get_dim("nO") in [2, None]
 | |
| 
 | |
|     for i in range(5):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
| 
 | |
|     # test the trained model before resizing
 | |
|     test_text = "I am happy."
 | |
|     doc = nlp(test_text)
 | |
|     assert len(doc.cats) == 2
 | |
|     pos_pred = doc.cats["POSITIVE"]
 | |
|     neg_pred = doc.cats["NEGATIVE"]
 | |
| 
 | |
|     # test the trained model again after resizing
 | |
|     textcat.add_label("NEUTRAL")
 | |
|     doc = nlp(test_text)
 | |
|     assert len(doc.cats) == 3
 | |
|     assert doc.cats["POSITIVE"] == pos_pred
 | |
|     assert doc.cats["NEGATIVE"] == neg_pred
 | |
|     assert doc.cats["NEUTRAL"] <= 1
 | |
| 
 | |
|     for i in range(5):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
| 
 | |
|     # test the trained model again after training further with new label
 | |
|     doc = nlp(test_text)
 | |
|     assert len(doc.cats) == 3
 | |
|     assert doc.cats["POSITIVE"] != pos_pred
 | |
|     assert doc.cats["NEGATIVE"] != neg_pred
 | |
|     for cat in doc.cats:
 | |
|         assert doc.cats[cat] <= 1
 | |
| 
 | |
| 
 | |
| def test_error_with_multi_labels():
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe("textcat")
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA_MULTI_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|     with pytest.raises(ValueError):
 | |
|         nlp.initialize(get_examples=lambda: train_examples)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "name,get_examples, train_data",
 | |
|     [
 | |
|         ("textcat", make_get_examples_single_label, TRAIN_DATA_SINGLE_LABEL),
 | |
|         ("textcat_multilabel", make_get_examples_multi_label, TRAIN_DATA_MULTI_LABEL),
 | |
|     ],
 | |
| )
 | |
| def test_initialize_examples(name, get_examples, train_data):
 | |
|     nlp = Language()
 | |
|     textcat = nlp.add_pipe(name)
 | |
|     for text, annotations in train_data:
 | |
|         for label, value in annotations.get("cats").items():
 | |
|             textcat.add_label(label)
 | |
|     # you shouldn't really call this more than once, but for testing it should be fine
 | |
|     nlp.initialize()
 | |
|     nlp.initialize(get_examples=get_examples(nlp))
 | |
|     with pytest.raises(TypeError):
 | |
|         nlp.initialize(get_examples=lambda: None)
 | |
|     with pytest.raises(TypeError):
 | |
|         nlp.initialize(get_examples=get_examples())
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO():
 | |
|     # Simple test to try and quickly overfit the single-label textcat component - ensuring the ML models work correctly
 | |
|     fix_random_seed(0)
 | |
|     nlp = English()
 | |
|     textcat = nlp.add_pipe("textcat")
 | |
| 
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA_SINGLE_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     assert textcat.model.get_dim("nO") == 2
 | |
| 
 | |
|     for i in range(50):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses["textcat"] < 0.01
 | |
| 
 | |
|     # test the trained model
 | |
|     test_text = "I am happy."
 | |
|     doc = nlp(test_text)
 | |
|     cats = doc.cats
 | |
|     assert cats["POSITIVE"] > 0.9
 | |
|     assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.001)
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         doc2 = nlp2(test_text)
 | |
|         cats2 = doc2.cats
 | |
|         assert cats2["POSITIVE"] > 0.9
 | |
|         assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.001)
 | |
| 
 | |
|     # Test scoring
 | |
|     scores = nlp.evaluate(train_examples)
 | |
|     assert scores["cats_micro_f"] == 1.0
 | |
|     assert scores["cats_macro_f"] == 1.0
 | |
|     assert scores["cats_macro_auc"] == 1.0
 | |
|     assert scores["cats_score"] == 1.0
 | |
|     assert "cats_score_desc" in scores
 | |
| 
 | |
|     # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
 | |
|     texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
 | |
|     batch_cats_1 = [doc.cats for doc in nlp.pipe(texts)]
 | |
|     batch_cats_2 = [doc.cats for doc in nlp.pipe(texts)]
 | |
|     no_batch_cats = [doc.cats for doc in [nlp(text) for text in texts]]
 | |
|     for cats_1, cats_2 in zip(batch_cats_1, batch_cats_2):
 | |
|         for cat in cats_1:
 | |
|             assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
 | |
|     for cats_1, cats_2 in zip(batch_cats_1, no_batch_cats):
 | |
|         for cat in cats_1:
 | |
|             assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO_multi():
 | |
|     # Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly
 | |
|     fix_random_seed(0)
 | |
|     nlp = English()
 | |
|     textcat = nlp.add_pipe("textcat_multilabel")
 | |
| 
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA_MULTI_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     assert textcat.model.get_dim("nO") == 3
 | |
| 
 | |
|     for i in range(100):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses["textcat_multilabel"] < 0.01
 | |
| 
 | |
|     # test the trained model
 | |
|     test_text = "I am confused but happy."
 | |
|     doc = nlp(test_text)
 | |
|     cats = doc.cats
 | |
|     assert cats["HAPPY"] > 0.9
 | |
|     assert cats["CONFUSED"] > 0.9
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         doc2 = nlp2(test_text)
 | |
|         cats2 = doc2.cats
 | |
|         assert cats2["HAPPY"] > 0.9
 | |
|         assert cats2["CONFUSED"] > 0.9
 | |
| 
 | |
|     # Test scoring
 | |
|     scores = nlp.evaluate(train_examples)
 | |
|     assert scores["cats_micro_f"] == 1.0
 | |
|     assert scores["cats_macro_f"] == 1.0
 | |
|     assert "cats_score_desc" in scores
 | |
| 
 | |
|     # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
 | |
|     texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
 | |
|     batch_deps_1 = [doc.cats for doc in nlp.pipe(texts)]
 | |
|     batch_deps_2 = [doc.cats for doc in nlp.pipe(texts)]
 | |
|     no_batch_deps = [doc.cats for doc in [nlp(text) for text in texts]]
 | |
|     for cats_1, cats_2 in zip(batch_deps_1, batch_deps_2):
 | |
|         for cat in cats_1:
 | |
|             assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
 | |
|     for cats_1, cats_2 in zip(batch_deps_1, no_batch_deps):
 | |
|         for cat in cats_1:
 | |
|             assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
 | |
| 
 | |
| 
 | |
| # fmt: off
 | |
| @pytest.mark.parametrize(
 | |
|     "name,train_data,textcat_config",
 | |
|     [
 | |
|         ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}),
 | |
|         ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False}),
 | |
|         ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 3, "no_output_layer": True}),
 | |
|         ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 2, "no_output_layer": True}),
 | |
|         ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}}),
 | |
|         ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 5, "no_output_layer": False}}),
 | |
|         ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
 | |
|         ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
 | |
|     ],
 | |
| )
 | |
| # fmt: on
 | |
| def test_textcat_configs(name, train_data, textcat_config):
 | |
|     pipe_config = {"model": textcat_config}
 | |
|     nlp = English()
 | |
|     textcat = nlp.add_pipe(name, config=pipe_config)
 | |
|     train_examples = []
 | |
|     for text, annotations in train_data:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|         for label, value in annotations.get("cats").items():
 | |
|             textcat.add_label(label)
 | |
|     optimizer = nlp.initialize()
 | |
|     for i in range(5):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
| 
 | |
| 
 | |
| def test_positive_class():
 | |
|     nlp = English()
 | |
|     textcat = nlp.add_pipe("textcat")
 | |
|     get_examples = make_get_examples_single_label(nlp)
 | |
|     textcat.initialize(get_examples, labels=["POS", "NEG"], positive_label="POS")
 | |
|     assert textcat.labels == ("POS", "NEG")
 | |
|     assert textcat.cfg["positive_label"] == "POS"
 | |
| 
 | |
|     textcat_multilabel = nlp.add_pipe("textcat_multilabel")
 | |
|     get_examples = make_get_examples_multi_label(nlp)
 | |
|     with pytest.raises(TypeError):
 | |
|         textcat_multilabel.initialize(
 | |
|             get_examples, labels=["POS", "NEG"], positive_label="POS"
 | |
|         )
 | |
|     textcat_multilabel.initialize(get_examples, labels=["FICTION", "DRAMA"])
 | |
|     assert textcat_multilabel.labels == ("FICTION", "DRAMA")
 | |
|     assert "positive_label" not in textcat_multilabel.cfg
 | |
| 
 | |
| 
 | |
| def test_positive_class_not_present():
 | |
|     nlp = English()
 | |
|     textcat = nlp.add_pipe("textcat")
 | |
|     get_examples = make_get_examples_single_label(nlp)
 | |
|     with pytest.raises(ValueError):
 | |
|         textcat.initialize(get_examples, labels=["SOME", "THING"], positive_label="POS")
 | |
| 
 | |
| 
 | |
| def test_positive_class_not_binary():
 | |
|     nlp = English()
 | |
|     textcat = nlp.add_pipe("textcat")
 | |
|     get_examples = make_get_examples_multi_label(nlp)
 | |
|     with pytest.raises(ValueError):
 | |
|         textcat.initialize(
 | |
|             get_examples, labels=["SOME", "THING", "POS"], positive_label="POS"
 | |
|         )
 | |
| 
 | |
| 
 | |
| def test_textcat_evaluation():
 | |
|     train_examples = []
 | |
|     nlp = English()
 | |
|     ref1 = nlp("one")
 | |
|     ref1.cats = {"winter": 1.0, "summer": 1.0, "spring": 1.0, "autumn": 1.0}
 | |
|     pred1 = nlp("one")
 | |
|     pred1.cats = {"winter": 1.0, "summer": 0.0, "spring": 1.0, "autumn": 1.0}
 | |
|     train_examples.append(Example(pred1, ref1))
 | |
| 
 | |
|     ref2 = nlp("two")
 | |
|     ref2.cats = {"winter": 0.0, "summer": 0.0, "spring": 1.0, "autumn": 1.0}
 | |
|     pred2 = nlp("two")
 | |
|     pred2.cats = {"winter": 1.0, "summer": 0.0, "spring": 0.0, "autumn": 1.0}
 | |
|     train_examples.append(Example(pred2, ref2))
 | |
| 
 | |
|     scores = Scorer().score_cats(
 | |
|         train_examples, "cats", labels=["winter", "summer", "spring", "autumn"]
 | |
|     )
 | |
|     assert scores["cats_f_per_type"]["winter"]["p"] == 1 / 2
 | |
|     assert scores["cats_f_per_type"]["winter"]["r"] == 1 / 1
 | |
|     assert scores["cats_f_per_type"]["summer"]["p"] == 0
 | |
|     assert scores["cats_f_per_type"]["summer"]["r"] == 0 / 1
 | |
|     assert scores["cats_f_per_type"]["spring"]["p"] == 1 / 1
 | |
|     assert scores["cats_f_per_type"]["spring"]["r"] == 1 / 2
 | |
|     assert scores["cats_f_per_type"]["autumn"]["p"] == 2 / 2
 | |
|     assert scores["cats_f_per_type"]["autumn"]["r"] == 2 / 2
 | |
| 
 | |
|     assert scores["cats_micro_p"] == 4 / 5
 | |
|     assert scores["cats_micro_r"] == 4 / 6
 | |
| 
 | |
| 
 | |
| def test_textcat_threshold():
 | |
|     # Ensure the scorer can be called with a different threshold
 | |
|     nlp = English()
 | |
|     nlp.add_pipe("textcat")
 | |
| 
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA_SINGLE_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|     nlp.initialize(get_examples=lambda: train_examples)
 | |
| 
 | |
|     # score the model (it's not actually trained but that doesn't matter)
 | |
|     scores = nlp.evaluate(train_examples)
 | |
|     assert 0 <= scores["cats_score"] <= 1
 | |
| 
 | |
|     scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 1.0})
 | |
|     assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 0
 | |
| 
 | |
|     scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0})
 | |
|     macro_f = scores["cats_score"]
 | |
|     assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
 | |
| 
 | |
|     scores = nlp.evaluate(
 | |
|         train_examples, scorer_cfg={"threshold": 0, "positive_label": "POSITIVE"}
 | |
|     )
 | |
|     pos_f = scores["cats_score"]
 | |
|     assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
 | |
|     assert pos_f > macro_f
 | |
| 
 | |
| 
 | |
| def test_textcat_multi_threshold():
 | |
|     # Ensure the scorer can be called with a different threshold
 | |
|     nlp = English()
 | |
|     nlp.add_pipe("textcat_multilabel")
 | |
| 
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA_SINGLE_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|     nlp.initialize(get_examples=lambda: train_examples)
 | |
| 
 | |
|     # score the model (it's not actually trained but that doesn't matter)
 | |
|     scores = nlp.evaluate(train_examples)
 | |
|     assert 0 <= scores["cats_score"] <= 1
 | |
| 
 | |
|     scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 1.0})
 | |
|     assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 0
 | |
| 
 | |
|     scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0})
 | |
|     assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
 |