mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	* Add edit tree lemmatizer Co-authored-by: Daniël de Kok <me@danieldk.eu> * Hide edit tree lemmatizer labels * Use relative imports * Switch to single quotes in error message * Type annotation fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Reformat edit_tree_lemmatizer with black * EditTreeLemmatizer.predict: take Iterable Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Validate edit trees during deserialization This change also changes the serialized representation. Rather than mirroring the deep C structure, we use a simple flat union of the match and substitution node types. * Move edit_trees to _edit_tree_internals * Fix invalid edit tree format error message * edit_tree_lemmatizer: remove outdated TODO comment * Rename factory name to trainable_lemmatizer * Ignore type instead of casting truths to List[Union[Ints1d, Floats2d, List[int], List[str]]] for thinc v8.0.14 * Switch to Tagger.v2 * Add documentation for EditTreeLemmatizer * docs: Fix 3.2 -> 3.3 somewhere * trainable_lemmatizer documentation fixes * docs: EditTreeLemmatizer is in edit_tree_lemmatizer.py Co-authored-by: Daniël de Kok <me@danieldk.eu> Co-authored-by: Daniël de Kok <me@github.danieldk.eu> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
		
			
				
	
	
		
			410 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			410 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: EditTreeLemmatizer
 | |
| tag: class
 | |
| source: spacy/pipeline/edit_tree_lemmatizer.py
 | |
| new: 3.3
 | |
| teaser: 'Pipeline component for lemmatization'
 | |
| api_base_class: /api/pipe
 | |
| api_string_name: trainable_lemmatizer
 | |
| api_trainable: true
 | |
| ---
 | |
| 
 | |
| A trainable component for assigning base forms to tokens. This lemmatizer uses
 | |
| **edit trees** to transform tokens into base forms. The lemmatization model
 | |
| predicts which edit tree is applicable to a token. The edit tree data structure
 | |
| and construction method used by this lemmatizer were proposed in
 | |
| [Joint Lemmatization and Morphological Tagging with Lemming](https://aclanthology.org/D15-1272.pdf)
 | |
| (Thomas Müller et al., 2015).
 | |
| 
 | |
| For a lookup and rule-based lemmatizer, see [`Lemmatizer`](/api/lemmatizer).
 | |
| 
 | |
| ## Assigned Attributes {#assigned-attributes}
 | |
| 
 | |
| Predictions are assigned to `Token.lemma`.
 | |
| 
 | |
| | Location       | Value                     |
 | |
| | -------------- | ------------------------- |
 | |
| | `Token.lemma`  | The lemma (hash). ~~int~~ |
 | |
| | `Token.lemma_` | The lemma. ~~str~~        |
 | |
| 
 | |
| ## Config and implementation {#config}
 | |
| 
 | |
| The default config is defined by the pipeline component factory and describes
 | |
| how the component should be configured. You can override its settings via the
 | |
| `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | |
| [`config.cfg` for training](/usage/training#config). See the
 | |
| [model architectures](/api/architectures) documentation for details on the
 | |
| architectures and their arguments and hyperparameters.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > from spacy.pipeline.edit_tree_lemmatizer import DEFAULT_EDIT_TREE_LEMMATIZER_MODEL
 | |
| > config = {"model": DEFAULT_EDIT_TREE_LEMMATIZER_MODEL}
 | |
| > nlp.add_pipe("trainable_lemmatizer", config=config, name="lemmatizer")
 | |
| > ```
 | |
| 
 | |
| | Setting         | Description                                                                                                                                                                                                                                                                                                        |
 | |
| | --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `model`         | A model instance that predicts the edit tree probabilities. The output vectors should match the number of edit trees in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
 | |
| | `backoff`       | ~~Token~~ attribute to use when no applicable edit tree is found. Defaults to `orth`. ~~str~~                                                                                                                                                                                                                      |
 | |
| | `min_tree_freq` | Minimum frequency of an edit tree in the training set to be used. Defaults to `3`. ~~int~~                                                                                                                                                                                                                         |
 | |
| | `overwrite`     | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~                                                                                                                                                                                                                                          |
 | |
| | `top_k`         | The number of most probable edit trees to try before resorting to `backoff`. Defaults to `1`. ~~int~~                                                                                                                                                                                                              |
 | |
| | `scorer`        | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"lemma"`. ~~Optional[Callable]~~                                                                                                                                                                      |
 | |
| 
 | |
| ```python
 | |
| %%GITHUB_SPACY/spacy/pipeline/edit_tree_lemmatizer.py
 | |
| ```
 | |
| 
 | |
| ## EditTreeLemmatizer.\_\_init\_\_ {#init tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > # Construction via add_pipe with default model
 | |
| > lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer")
 | |
| >
 | |
| > # Construction via create_pipe with custom model
 | |
| > config = {"model": {"@architectures": "my_tagger"}}
 | |
| > lemmatizer = nlp.add_pipe("trainable_lemmatizer", config=config, name="lemmatizer")
 | |
| >
 | |
| > # Construction from class
 | |
| > from spacy.pipeline import EditTreeLemmatizer
 | |
| > lemmatizer = EditTreeLemmatizer(nlp.vocab, model)
 | |
| > ```
 | |
| 
 | |
| Create a new pipeline instance. In your application, you would normally use a
 | |
| shortcut for this and instantiate the component using its string name and
 | |
| [`nlp.add_pipe`](/api/language#add_pipe).
 | |
| 
 | |
| | Name            | Description                                                                                                                                                                                                                                                       |
 | |
| | --------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `vocab`         | The shared vocabulary. ~~Vocab~~                                                                                                                                                                                                                                  |
 | |
| | `model`         | A model instance that predicts the edit tree probabilities. The output vectors should match the number of edit trees in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). ~~Model[List[Doc], List[Floats2d]]~~ |
 | |
| | `name`          | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~                                                                                                                                                               |
 | |
| | _keyword-only_  |                                                                                                                                                                                                                                                                   |
 | |
| | `backoff`       | ~~Token~~ attribute to use when no applicable edit tree is found. Defaults to `orth`. ~~str~~                                                                                                                                                                     |
 | |
| | `min_tree_freq` | Minimum frequency of an edit tree in the training set to be used. Defaults to `3`. ~~int~~                                                                                                                                                                        |
 | |
| | `overwrite`     | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~                                                                                                                                                                                         |
 | |
| | `top_k`         | The number of most probable edit trees to try before resorting to `backoff`. Defaults to `1`. ~~int~~                                                                                                                                                             |
 | |
| | `scorer`        | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"lemma"`. ~~Optional[Callable]~~                                                                                                                     |
 | |
| 
 | |
| ## EditTreeLemmatizer.\_\_call\_\_ {#call tag="method"}
 | |
| 
 | |
| Apply the pipe to one document. The document is modified in place, and returned.
 | |
| This usually happens under the hood when the `nlp` object is called on a text
 | |
| and all pipeline components are applied to the `Doc` in order. Both
 | |
| [`__call__`](/api/edittreelemmatizer#call) and
 | |
| [`pipe`](/api/edittreelemmatizer#pipe) delegate to the
 | |
| [`predict`](/api/edittreelemmatizer#predict) and
 | |
| [`set_annotations`](/api/edittreelemmatizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > doc = nlp("This is a sentence.")
 | |
| > lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer")
 | |
| > # This usually happens under the hood
 | |
| > processed = lemmatizer(doc)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                      |
 | |
| | ----------- | -------------------------------- |
 | |
| | `doc`       | The document to process. ~~Doc~~ |
 | |
| | **RETURNS** | The processed document. ~~Doc~~  |
 | |
| 
 | |
| ## EditTreeLemmatizer.pipe {#pipe tag="method"}
 | |
| 
 | |
| Apply the pipe to a stream of documents. This usually happens under the hood
 | |
| when the `nlp` object is called on a text and all pipeline components are
 | |
| applied to the `Doc` in order. Both [`__call__`](/api/edittreelemmatizer#call)
 | |
| and [`pipe`](/api/edittreelemmatizer#pipe) delegate to the
 | |
| [`predict`](/api/edittreelemmatizer#predict) and
 | |
| [`set_annotations`](/api/edittreelemmatizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer")
 | |
| > for doc in lemmatizer.pipe(docs, batch_size=50):
 | |
| >     pass
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                   |
 | |
| | -------------- | ------------------------------------------------------------- |
 | |
| | `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | |
| | _keyword-only_ |                                                               |
 | |
| | `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | |
| | **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | |
| 
 | |
| ## EditTreeLemmatizer.initialize {#initialize tag="method" new="3"}
 | |
| 
 | |
| Initialize the component for training. `get_examples` should be a function that
 | |
| returns an iterable of [`Example`](/api/example) objects. The data examples are
 | |
| used to **initialize the model** of the component and can either be the full
 | |
| training data or a representative sample. Initialization includes validating the
 | |
| network,
 | |
| [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
 | |
| setting up the label scheme based on the data. This method is typically called
 | |
| by [`Language.initialize`](/api/language#initialize) and lets you customize
 | |
| arguments it receives via the
 | |
| [`[initialize.components]`](/api/data-formats#config-initialize) block in the
 | |
| config.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer")
 | |
| > lemmatizer.initialize(lambda: [], nlp=nlp)
 | |
| > ```
 | |
| >
 | |
| > ```ini
 | |
| > ### config.cfg
 | |
| > [initialize.components.lemmatizer]
 | |
| >
 | |
| > [initialize.components.lemmatizer.labels]
 | |
| > @readers = "spacy.read_labels.v1"
 | |
| > path = "corpus/labels/lemmatizer.json
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                                                                                                                                                                                                                                                                                |
 | |
| | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~                                                                                                                                                                                                                                                                      |
 | |
| | _keyword-only_ |                                                                                                                                                                                                                                                                                                                                                                                                            |
 | |
| | `nlp`          | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                                                                                                                                                                                                                                                                                       |
 | |
| | `labels`       | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Iterable[str]]~~ |
 | |
| 
 | |
| ## EditTreeLemmatizer.predict {#predict tag="method"}
 | |
| 
 | |
| Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
 | |
| modifying them.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer")
 | |
| > tree_ids = lemmatizer.predict([doc1, doc2])
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                 |
 | |
| | ----------- | ------------------------------------------- |
 | |
| | `docs`      | The documents to predict. ~~Iterable[Doc]~~ |
 | |
| | **RETURNS** | The model's prediction for each document.   |
 | |
| 
 | |
| ## EditTreeLemmatizer.set_annotations {#set_annotations tag="method"}
 | |
| 
 | |
| Modify a batch of [`Doc`](/api/doc) objects, using pre-computed tree
 | |
| identifiers.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer")
 | |
| > tree_ids = lemmatizer.predict([doc1, doc2])
 | |
| > lemmatizer.set_annotations([doc1, doc2], tree_ids)
 | |
| > ```
 | |
| 
 | |
| | Name       | Description                                                                           |
 | |
| | ---------- | ------------------------------------------------------------------------------------- |
 | |
| | `docs`     | The documents to modify. ~~Iterable[Doc]~~                                            |
 | |
| | `tree_ids` | The identifiers of the edit trees to apply, produced by `EditTreeLemmatizer.predict`. |
 | |
| 
 | |
| ## EditTreeLemmatizer.update {#update tag="method"}
 | |
| 
 | |
| Learn from a batch of [`Example`](/api/example) objects containing the
 | |
| predictions and gold-standard annotations, and update the component's model.
 | |
| Delegates to [`predict`](/api/edittreelemmatizer#predict) and
 | |
| [`get_loss`](/api/edittreelemmatizer#get_loss).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer")
 | |
| > optimizer = nlp.initialize()
 | |
| > losses = lemmatizer.update(examples, sgd=optimizer)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                              |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                        |
 | |
| | _keyword-only_ |                                                                                                                          |
 | |
| | `drop`         | The dropout rate. ~~float~~                                                                                              |
 | |
| | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~            |
 | |
| | `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
 | |
| | **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                    |
 | |
| 
 | |
| ## EditTreeLemmatizer.get_loss {#get_loss tag="method"}
 | |
| 
 | |
| Find the loss and gradient of loss for the batch of documents and their
 | |
| predicted scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer")
 | |
| > scores = lemmatizer.model.begin_update([eg.predicted for eg in examples])
 | |
| > loss, d_loss = lemmatizer.get_loss(examples, scores)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                                 |
 | |
| | ----------- | --------------------------------------------------------------------------- |
 | |
| | `examples`  | The batch of examples. ~~Iterable[Example]~~                                |
 | |
| | `scores`    | Scores representing the model's predictions.                                |
 | |
| | **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ |
 | |
| 
 | |
| ## EditTreeLemmatizer.create_optimizer {#create_optimizer tag="method"}
 | |
| 
 | |
| Create an optimizer for the pipeline component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer")
 | |
| > optimizer = lemmatizer.create_optimizer()
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                  |
 | |
| | ----------- | ---------------------------- |
 | |
| | **RETURNS** | The optimizer. ~~Optimizer~~ |
 | |
| 
 | |
| ## EditTreeLemmatizer.use_params {#use_params tag="method, contextmanager"}
 | |
| 
 | |
| Modify the pipe's model, to use the given parameter values. At the end of the
 | |
| context, the original parameters are restored.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer")
 | |
| > with lemmatizer.use_params(optimizer.averages):
 | |
| >     lemmatizer.to_disk("/best_model")
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                        |
 | |
| | -------- | -------------------------------------------------- |
 | |
| | `params` | The parameter values to use in the model. ~~dict~~ |
 | |
| 
 | |
| ## EditTreeLemmatizer.to_disk {#to_disk tag="method"}
 | |
| 
 | |
| Serialize the pipe to disk.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer")
 | |
| > lemmatizer.to_disk("/path/to/lemmatizer")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                                                            |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | |
| 
 | |
| ## EditTreeLemmatizer.from_disk {#from_disk tag="method"}
 | |
| 
 | |
| Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer")
 | |
| > lemmatizer.from_disk("/path/to/lemmatizer")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                     |
 | |
| | -------------- | ----------------------------------------------------------------------------------------------- |
 | |
| | `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                 |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | |
| | **RETURNS**    | The modified `EditTreeLemmatizer` object. ~~EditTreeLemmatizer~~                                |
 | |
| 
 | |
| ## EditTreeLemmatizer.to_bytes {#to_bytes tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer")
 | |
| > lemmatizer_bytes = lemmatizer.to_bytes()
 | |
| > ```
 | |
| 
 | |
| Serialize the pipe to a bytestring.
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The serialized form of the `EditTreeLemmatizer` object. ~~bytes~~                           |
 | |
| 
 | |
| ## EditTreeLemmatizer.from_bytes {#from_bytes tag="method"}
 | |
| 
 | |
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer_bytes = lemmatizer.to_bytes()
 | |
| > lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer")
 | |
| > lemmatizer.from_bytes(lemmatizer_bytes)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The `EditTreeLemmatizer` object. ~~EditTreeLemmatizer~~                                     |
 | |
| 
 | |
| ## EditTreeLemmatizer.labels {#labels tag="property"}
 | |
| 
 | |
| The labels currently added to the component.
 | |
| 
 | |
| <Infobox variant="warning" title="Interpretability of the labels">
 | |
| 
 | |
| The `EditTreeLemmatizer` labels are not useful by themselves, since they are
 | |
| identifiers of edit trees.
 | |
| 
 | |
| </Infobox>
 | |
| 
 | |
| | Name        | Description                                            |
 | |
| | ----------- | ------------------------------------------------------ |
 | |
| | **RETURNS** | The labels added to the component. ~~Tuple[str, ...]~~ |
 | |
| 
 | |
| ## EditTreeLemmatizer.label_data {#label_data tag="property" new="3"}
 | |
| 
 | |
| The labels currently added to the component and their internal meta information.
 | |
| This is the data generated by [`init labels`](/api/cli#init-labels) and used by
 | |
| [`EditTreeLemmatizer.initialize`](/api/edittreelemmatizer#initialize) to
 | |
| initialize the model with a pre-defined label set.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > labels = lemmatizer.label_data
 | |
| > lemmatizer.initialize(lambda: [], nlp=nlp, labels=labels)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                |
 | |
| | ----------- | ---------------------------------------------------------- |
 | |
| | **RETURNS** | The label data added to the component. ~~Tuple[str, ...]~~ |
 | |
| 
 | |
| ## Serialization fields {#serialization-fields}
 | |
| 
 | |
| During serialization, spaCy will export several data fields used to restore
 | |
| different aspects of the object. If needed, you can exclude them from
 | |
| serialization by passing in the string names via the `exclude` argument.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > data = lemmatizer.to_disk("/path", exclude=["vocab"])
 | |
| > ```
 | |
| 
 | |
| | Name    | Description                                                    |
 | |
| | ------- | -------------------------------------------------------------- |
 | |
| | `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | |
| | `cfg`   | The config file. You usually don't want to exclude this.       |
 | |
| | `model` | The binary model data. You usually don't want to exclude this. |
 | |
| | `trees` | The edit trees. You usually don't want to exclude this.        |
 |