mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 12:18:04 +03:00
180 lines
6.4 KiB
Markdown
180 lines
6.4 KiB
Markdown
---
|
|
title: Model Architectures
|
|
teaser: Pre-defined model architectures included with the core library
|
|
source: spacy/ml/models
|
|
menu:
|
|
- ['Tok2Vec', 'tok2vec']
|
|
- ['Transformers', 'transformers']
|
|
- ['Parser & NER', 'parser']
|
|
- ['Tagging', 'tagger']
|
|
- ['Text Classification', 'textcat']
|
|
- ['Entity Linking', 'entitylinker']
|
|
---
|
|
|
|
TODO: intro and how architectures work, link to
|
|
[`registry`](/api/top-level#registry),
|
|
[custom models](/usage/training#custom-models) usage etc.
|
|
|
|
## Tok2Vec architectures {#tok2vec source="spacy/ml/models/tok2vec.py"}
|
|
|
|
### spacy.HashEmbedCNN.v1 {#HashEmbedCNN}
|
|
|
|
<!-- TODO: intro -->
|
|
|
|
> #### Example Config
|
|
>
|
|
> ```ini
|
|
> [model]
|
|
> @architectures = "spacy.HashEmbedCNN.v1"
|
|
> # TODO: ...
|
|
>
|
|
> [model.tok2vec]
|
|
> # ...
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| -------------------- | ----- | ----------- |
|
|
| `width` | int | |
|
|
| `depth` | int | |
|
|
| `embed_size` | int | |
|
|
| `window_size` | int | |
|
|
| `maxout_pieces` | int | |
|
|
| `subword_features` | bool | |
|
|
| `dropout` | float | |
|
|
| `pretrained_vectors` | bool | |
|
|
|
|
### spacy.HashCharEmbedCNN.v1 {#HashCharEmbedCNN}
|
|
|
|
### spacy.HashCharEmbedBiLSTM.v1 {#HashCharEmbedBiLSTM}
|
|
|
|
## Transformer architectures {#transformers source="github.com/explosion/spacy-transformers/blob/master/spacy_transformers/architectures.py"}
|
|
|
|
The following architectures are provided by the package
|
|
[`spacy-transformers`](https://github.com/explosion/spacy-transformers). See the
|
|
[usage documentation](/usage/transformers) for how to integrate the
|
|
architectures into your training config.
|
|
|
|
### spacy-transformers.TransformerModel.v1 {#TransformerModel}
|
|
|
|
<!-- TODO: description -->
|
|
|
|
> #### Example Config
|
|
>
|
|
> ```ini
|
|
> [model]
|
|
> @architectures = "spacy-transformers.TransformerModel.v1"
|
|
> name = "roberta-base"
|
|
> tokenizer_config = {"use_fast": true}
|
|
>
|
|
> [model.get_spans]
|
|
> @span_getters = "strided_spans.v1"
|
|
> window = 128
|
|
> stride = 96
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ------------------ | ---------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `name` | str | Any model name that can be loaded by [`transformers.AutoModel`](https://huggingface.co/transformers/model_doc/auto.html#transformers.AutoModel). |
|
|
| `get_spans` | `Callable` | Function that takes a batch of [`Doc`](/api/doc) object and returns lists of [`Span`](/api) objects to process by the transformer. [See here](/api/transformer#span_getters) for built-in options and examples. |
|
|
| `tokenizer_config` | `Dict[str, Any]` | Tokenizer settings passed to [`transformers.AutoTokenizer`](https://huggingface.co/transformers/model_doc/auto.html#transformers.AutoTokenizer). |
|
|
|
|
### spacy-transformers.Tok2VecListener.v1 {#Tok2VecListener}
|
|
|
|
<!-- TODO: description -->
|
|
|
|
> #### Example Config
|
|
>
|
|
> ```ini
|
|
> [model]
|
|
> @architectures = "spacy-transformers.Tok2VecListener.v1"
|
|
> grad_factor = 1.0
|
|
>
|
|
> [model.pooling]
|
|
> @layers = "reduce_mean.v1"
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ------------- | ------------------------- | ---------------------------------------------------------------------------------------------- |
|
|
| `grad_factor` | float | Factor for weighting the gradient if multiple components listen to the same transformer model. |
|
|
| `pooling` | `Model[Ragged, Floats2d]` | Pooling layer to determine how the vector for each spaCy token will be computed. |
|
|
|
|
## Parser & NER architectures {#parser source="spacy/ml/models/parser.py"}
|
|
|
|
### spacy.TransitionBasedParser.v1 {#TransitionBasedParser}
|
|
|
|
> #### Example Config
|
|
>
|
|
> ```ini
|
|
> [model]
|
|
> @architectures = "spacy.TransitionBasedParser.v1"
|
|
> nr_feature_tokens = 6
|
|
> hidden_width = 64
|
|
> maxout_pieces = 2
|
|
>
|
|
> [model.tok2vec]
|
|
> # ...
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ------------------- | ------------------------------------------ | ----------- |
|
|
| `tok2vec` | [`Model`](https://thinc.ai/docs/api-model) | |
|
|
| `nr_feature_tokens` | int | |
|
|
| `hidden_width` | int | |
|
|
| `maxout_pieces` | int | |
|
|
| `use_upper` | bool | |
|
|
| `nO` | int | |
|
|
|
|
## Tagging architectures {#tagger source="spacy/ml/models/tagger.py"}
|
|
|
|
### spacy.Tagger.v1 {#Tagger}
|
|
|
|
<!-- TODO: intro -->
|
|
|
|
> #### Example Config
|
|
>
|
|
> ```ini
|
|
> [model]
|
|
> @architectures = "spacy.Tagger.v1"
|
|
> nO = null
|
|
>
|
|
> [model.tok2vec]
|
|
> # ...
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| --------- | ------------------------------------------ | ----------- |
|
|
| `tok2vec` | [`Model`](https://thinc.ai/docs/api-model) | |
|
|
| `nO` | int | |
|
|
|
|
## Text classification architectures {#textcat source="spacy/ml/models/textcat.py"}
|
|
|
|
### spacy.TextCatEnsemble.v1 {#TextCatEnsemble}
|
|
|
|
### spacy.TextCatBOW.v1 {#TextCatBOW}
|
|
|
|
### spacy.TextCatCNN.v1 {#TextCatCNN}
|
|
|
|
### spacy.TextCatLowData.v1 {#TextCatLowData}
|
|
|
|
## Entity linking architectures {#entitylinker source="spacy/ml/models/entity_linker.py"}
|
|
|
|
### spacy.EntityLinker.v1 {#EntityLinker}
|
|
|
|
<!-- TODO: intro -->
|
|
|
|
> #### Example Config
|
|
>
|
|
> ```ini
|
|
> [model]
|
|
> @architectures = "spacy.EntityLinker.v1"
|
|
> nO = null
|
|
>
|
|
> [model.tok2vec]
|
|
> # ...
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| --------- | ------------------------------------------ | ----------- |
|
|
| `tok2vec` | [`Model`](https://thinc.ai/docs/api-model) | |
|
|
| `nO` | int | |
|