mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 18:06:29 +03:00
a322d6d5f2
* Add SpanRuler component Add a `SpanRuler` component similar to `EntityRuler` that saves a list of matched spans to `Doc.spans[spans_key]`. The matches from the token and phrase matchers are deduplicated and sorted before assignment but are not otherwise filtered. * Update spacy/pipeline/span_ruler.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix cast * Add self.key property * Use number of patterns as length * Remove patterns kwarg from init * Update spacy/tests/pipeline/test_span_ruler.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Add options for spans filter and setting to ents * Add `spans_filter` option as a registered function' * Make `spans_key` optional and if `None`, set to `doc.ents` instead of `doc.spans[spans_key]`. * Update and generalize tests * Add test for setting doc.ents, fix key property type * Fix typing * Allow independent doc.spans and doc.ents * If `spans_key` is set, set `doc.spans` with `spans_filter`. * If `annotate_ents` is set, set `doc.ents` with `ents_fitler`. * Use `util.filter_spans` by default as `ents_filter`. * Use a custom warning if the filter does not work for `doc.ents`. * Enable use of SpanC.id in Span * Support id in SpanRuler as Span.id * Update types * `id` can only be provided as string (already by `PatternType` definition) * Update all uses of Span.id/ent_id in Doc * Rename Span id kwarg to span_id * Update types and docs * Add ents filter to mimic EntityRuler overwrite_ents * Refactor `ents_filter` to take `entities, spans` args for more filtering options * Give registered filters more descriptive names * Allow registered `filter_spans` filter (`spacy.first_longest_spans_filter.v1`) to take any number of `Iterable[Span]` objects as args so it can be used for spans filter or ents filter * Implement future entity ruler as span ruler Implement a compatible `entity_ruler` as `future_entity_ruler` using `SpanRuler` as the underlying component: * Add `sort_key` and `sort_reverse` to allow the sorting behavior to be customized. (Necessary for the same sorting/filtering as in `EntityRuler`.) * Implement `overwrite_overlapping_ents_filter` and `preserve_existing_ents_filter` to support `EntityRuler.overwrite_ents` settings. * Add `remove_by_id` to support `EntityRuler.remove` functionality. * Refactor `entity_ruler` tests to parametrize all tests to test both `entity_ruler` and `future_entity_ruler` * Implement `SpanRuler.token_patterns` and `SpanRuler.phrase_patterns` properties. Additional changes: * Move all config settings to top-level attributes to avoid duplicating settings in the config vs. `span_ruler/cfg`. (Also avoids a lot of casting.) * Format * Fix filter make method name * Refactor to use same error for removing by label or ID * Also provide existing spans to spans filter * Support ids property * Remove token_patterns and phrase_patterns * Update docstrings * Add span ruler docs * Fix types * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Move sorting into filters * Check for all tokens in seen tokens in entity ruler filters * Remove registered sort key * Set Token.ent_id in a backwards-compatible way in Doc.set_ents * Remove sort options from API docs * Update docstrings * Rename entity ruler filters * Fix and parameterize scoring * Add id to Span API docs * Fix typo in API docs * Include explicit labeled=True for scorer Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
570 lines
25 KiB
Markdown
570 lines
25 KiB
Markdown
---
|
||
title: Span
|
||
tag: class
|
||
source: spacy/tokens/span.pyx
|
||
---
|
||
|
||
A slice from a [`Doc`](/api/doc) object.
|
||
|
||
## Span.\_\_init\_\_ {#init tag="method"}
|
||
|
||
Create a `Span` object from the slice `doc[start : end]`.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("Give it back! He pleaded.")
|
||
> span = doc[1:4]
|
||
> assert [t.text for t in span] == ["it", "back", "!"]
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------------- | --------------------------------------------------------------------------------------- |
|
||
| `doc` | The parent document. ~~Doc~~ |
|
||
| `start` | The index of the first token of the span. ~~int~~ |
|
||
| `end` | The index of the first token after the span. ~~int~~ |
|
||
| `label` | A label to attach to the span, e.g. for named entities. ~~Union[str, int]~~ |
|
||
| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||
| `vector_norm` | The L2 norm of the document's vector representation. ~~float~~ |
|
||
| `kb_id` | A knowledge base ID to attach to the span, e.g. for named entities. ~~Union[str, int]~~ |
|
||
| `span_id` | An ID to associate with the span. ~~Union[str, int]~~ |
|
||
|
||
## Span.\_\_getitem\_\_ {#getitem tag="method"}
|
||
|
||
Get a `Token` object.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("Give it back! He pleaded.")
|
||
> span = doc[1:4]
|
||
> assert span[1].text == "back"
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ----------------------------------------------- |
|
||
| `i` | The index of the token within the span. ~~int~~ |
|
||
| **RETURNS** | The token at `span[i]`. ~~Token~~ |
|
||
|
||
Get a `Span` object.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("Give it back! He pleaded.")
|
||
> span = doc[1:4]
|
||
> assert span[1:3].text == "back!"
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ------------------------------------------------- |
|
||
| `start_end` | The slice of the span to get. ~~Tuple[int, int]~~ |
|
||
| **RETURNS** | The span at `span[start : end]`. ~~Span~~ |
|
||
|
||
## Span.\_\_iter\_\_ {#iter tag="method"}
|
||
|
||
Iterate over `Token` objects.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("Give it back! He pleaded.")
|
||
> span = doc[1:4]
|
||
> assert [t.text for t in span] == ["it", "back", "!"]
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ---------- | --------------------------- |
|
||
| **YIELDS** | A `Token` object. ~~Token~~ |
|
||
|
||
## Span.\_\_len\_\_ {#len tag="method"}
|
||
|
||
Get the number of tokens in the span.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("Give it back! He pleaded.")
|
||
> span = doc[1:4]
|
||
> assert len(span) == 3
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ----------------------------------------- |
|
||
| **RETURNS** | The number of tokens in the span. ~~int~~ |
|
||
|
||
## Span.set_extension {#set_extension tag="classmethod" new="2"}
|
||
|
||
Define a custom attribute on the `Span` which becomes available via `Span._`.
|
||
For details, see the documentation on
|
||
[custom attributes](/usage/processing-pipelines#custom-components-attributes).
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.tokens import Span
|
||
> city_getter = lambda span: any(city in span.text for city in ("New York", "Paris", "Berlin"))
|
||
> Span.set_extension("has_city", getter=city_getter)
|
||
> doc = nlp("I like New York in Autumn")
|
||
> assert doc[1:4]._.has_city
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| --------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `name` | Name of the attribute to set by the extension. For example, `"my_attr"` will be available as `span._.my_attr`. ~~str~~ |
|
||
| `default` | Optional default value of the attribute if no getter or method is defined. ~~Optional[Any]~~ |
|
||
| `method` | Set a custom method on the object, for example `span._.compare(other_span)`. ~~Optional[Callable[[Span, ...], Any]]~~ |
|
||
| `getter` | Getter function that takes the object and returns an attribute value. Is called when the user accesses the `._` attribute. ~~Optional[Callable[[Span], Any]]~~ |
|
||
| `setter` | Setter function that takes the `Span` and a value, and modifies the object. Is called when the user writes to the `Span._` attribute. ~~Optional[Callable[[Span, Any], None]]~~ |
|
||
| `force` | Force overwriting existing attribute. ~~bool~~ |
|
||
|
||
## Span.get_extension {#get_extension tag="classmethod" new="2"}
|
||
|
||
Look up a previously registered extension by name. Returns a 4-tuple
|
||
`(default, method, getter, setter)` if the extension is registered. Raises a
|
||
`KeyError` otherwise.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.tokens import Span
|
||
> Span.set_extension("is_city", default=False)
|
||
> extension = Span.get_extension("is_city")
|
||
> assert extension == (False, None, None, None)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `name` | Name of the extension. ~~str~~ |
|
||
| **RETURNS** | A `(default, method, getter, setter)` tuple of the extension. ~~Tuple[Optional[Any], Optional[Callable], Optional[Callable], Optional[Callable]]~~ |
|
||
|
||
## Span.has_extension {#has_extension tag="classmethod" new="2"}
|
||
|
||
Check whether an extension has been registered on the `Span` class.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.tokens import Span
|
||
> Span.set_extension("is_city", default=False)
|
||
> assert Span.has_extension("is_city")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | --------------------------------------------------- |
|
||
| `name` | Name of the extension to check. ~~str~~ |
|
||
| **RETURNS** | Whether the extension has been registered. ~~bool~~ |
|
||
|
||
## Span.remove_extension {#remove_extension tag="classmethod" new="2.0.12"}
|
||
|
||
Remove a previously registered extension.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.tokens import Span
|
||
> Span.set_extension("is_city", default=False)
|
||
> removed = Span.remove_extension("is_city")
|
||
> assert not Span.has_extension("is_city")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `name` | Name of the extension. ~~str~~ |
|
||
| **RETURNS** | A `(default, method, getter, setter)` tuple of the removed extension. ~~Tuple[Optional[Any], Optional[Callable], Optional[Callable], Optional[Callable]]~~ |
|
||
|
||
## Span.char_span {#char_span tag="method" new="2.2.4"}
|
||
|
||
Create a `Span` object from the slice `span.text[start:end]`. Returns `None` if
|
||
the character indices don't map to a valid span.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like New York")
|
||
> span = doc[1:4].char_span(5, 13, label="GPE")
|
||
> assert span.text == "New York"
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------------------------------------ | ----------------------------------------------------------------------------------------- |
|
||
| `start` | The index of the first character of the span. ~~int~~ |
|
||
| `end` | The index of the last character after the span. ~~int~~ |
|
||
| `label` | A label to attach to the span, e.g. for named entities. ~~Union[int, str]~~ |
|
||
| `kb_id` <Tag variant="new">2.2</Tag> | An ID from a knowledge base to capture the meaning of a named entity. ~~Union[int, str]~~ |
|
||
| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||
| **RETURNS** | The newly constructed object or `None`. ~~Optional[Span]~~ |
|
||
|
||
## Span.similarity {#similarity tag="method" model="vectors"}
|
||
|
||
Make a semantic similarity estimate. The default estimate is cosine similarity
|
||
using an average of word vectors.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("green apples and red oranges")
|
||
> green_apples = doc[:2]
|
||
> red_oranges = doc[3:]
|
||
> apples_oranges = green_apples.similarity(red_oranges)
|
||
> oranges_apples = red_oranges.similarity(green_apples)
|
||
> assert apples_oranges == oranges_apples
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | -------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `other` | The object to compare with. By default, accepts `Doc`, `Span`, `Token` and `Lexeme` objects. ~~Union[Doc, Span, Token, Lexeme]~~ |
|
||
| **RETURNS** | A scalar similarity score. Higher is more similar. ~~float~~ |
|
||
|
||
## Span.get_lca_matrix {#get_lca_matrix tag="method"}
|
||
|
||
Calculates the lowest common ancestor matrix for a given `Span`. Returns LCA
|
||
matrix containing the integer index of the ancestor, or `-1` if no common
|
||
ancestor is found, e.g. if span excludes a necessary ancestor.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like New York in Autumn")
|
||
> span = doc[1:4]
|
||
> matrix = span.get_lca_matrix()
|
||
> # array([[0, 0, 0], [0, 1, 2], [0, 2, 2]], dtype=int32)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | --------------------------------------------------------------------------------------- |
|
||
| **RETURNS** | The lowest common ancestor matrix of the `Span`. ~~numpy.ndarray[ndim=2, dtype=int32]~~ |
|
||
|
||
## Span.to_array {#to_array tag="method" new="2"}
|
||
|
||
Given a list of `M` attribute IDs, export the tokens to a numpy `ndarray` of
|
||
shape `(N, M)`, where `N` is the length of the document. The values will be
|
||
32-bit integers.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
|
||
> doc = nlp("I like New York in Autumn.")
|
||
> span = doc[2:3]
|
||
> # All strings mapped to integers, for easy export to numpy
|
||
> np_array = span.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ---------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `attr_ids` | A list of attributes (int IDs or string names) or a single attribute (int ID or string name). ~~Union[int, str, List[Union[int, str]]]~~ |
|
||
| **RETURNS** | The exported attributes as a numpy array. ~~Union[numpy.ndarray[ndim=2, dtype=uint64], numpy.ndarray[ndim=1, dtype=uint64]]~~ |
|
||
|
||
## Span.ents {#ents tag="property" new="2.0.13" model="ner"}
|
||
|
||
The named entities that fall completely within the span. Returns a tuple of
|
||
`Span` objects.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("Mr. Best flew to New York on Saturday morning.")
|
||
> span = doc[0:6]
|
||
> ents = list(span.ents)
|
||
> assert ents[0].label == 346
|
||
> assert ents[0].label_ == "PERSON"
|
||
> assert ents[0].text == "Mr. Best"
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ----------------------------------------------------------------- |
|
||
| **RETURNS** | Entities in the span, one `Span` per entity. ~~Tuple[Span, ...]~~ |
|
||
|
||
## Span.noun_chunks {#noun_chunks tag="property" model="parser"}
|
||
|
||
Iterate over the base noun phrases in the span. Yields base noun-phrase `Span`
|
||
objects, if the document has been syntactically parsed. A base noun phrase, or
|
||
"NP chunk", is a noun phrase that does not permit other NPs to be nested within
|
||
it – so no NP-level coordination, no prepositional phrases, and no relative
|
||
clauses.
|
||
|
||
If the `noun_chunk` [syntax iterator](/usage/linguistic-features#language-data)
|
||
has not been implemeted for the given language, a `NotImplementedError` is
|
||
raised.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("A phrase with another phrase occurs.")
|
||
> span = doc[3:5]
|
||
> chunks = list(span.noun_chunks)
|
||
> assert len(chunks) == 1
|
||
> assert chunks[0].text == "another phrase"
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ---------- | --------------------------------- |
|
||
| **YIELDS** | Noun chunks in the span. ~~Span~~ |
|
||
|
||
## Span.as_doc {#as_doc tag="method"}
|
||
|
||
Create a new `Doc` object corresponding to the `Span`, with a copy of the data.
|
||
|
||
When calling this on many spans from the same doc, passing in a precomputed
|
||
array representation of the doc using the `array_head` and `array` args can save
|
||
time.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like New York in Autumn.")
|
||
> span = doc[2:4]
|
||
> doc2 = span.as_doc()
|
||
> assert doc2.text == "New York"
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ---------------- | -------------------------------------------------------------------------------------------------------------------- |
|
||
| `copy_user_data` | Whether or not to copy the original doc's user data. ~~bool~~ |
|
||
| `array_head` | Precomputed array attributes (headers) of the original doc, as generated by `Doc._get_array_attrs()`. ~~Tuple~~ |
|
||
| `array` | Precomputed array version of the original doc as generated by [`Doc.to_array`](/api/doc#to_array). ~~numpy.ndarray~~ |
|
||
| **RETURNS** | A `Doc` object of the `Span`'s content. ~~Doc~~ |
|
||
|
||
## Span.root {#root tag="property" model="parser"}
|
||
|
||
The token with the shortest path to the root of the sentence (or the root
|
||
itself). If multiple tokens are equally high in the tree, the first token is
|
||
taken.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like New York in Autumn.")
|
||
> i, like, new, york, in_, autumn, dot = range(len(doc))
|
||
> assert doc[new].head.text == "York"
|
||
> assert doc[york].head.text == "like"
|
||
> new_york = doc[new:york+1]
|
||
> assert new_york.root.text == "York"
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ------------------------- |
|
||
| **RETURNS** | The root token. ~~Token~~ |
|
||
|
||
## Span.conjuncts {#conjuncts tag="property" model="parser"}
|
||
|
||
A tuple of tokens coordinated to `span.root`.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like apples and oranges")
|
||
> apples_conjuncts = doc[2:3].conjuncts
|
||
> assert [t.text for t in apples_conjuncts] == ["oranges"]
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | --------------------------------------------- |
|
||
| **RETURNS** | The coordinated tokens. ~~Tuple[Token, ...]~~ |
|
||
|
||
## Span.lefts {#lefts tag="property" model="parser"}
|
||
|
||
Tokens that are to the left of the span, whose heads are within the span.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like New York in Autumn.")
|
||
> lefts = [t.text for t in doc[3:7].lefts]
|
||
> assert lefts == ["New"]
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ---------- | ---------------------------------------------- |
|
||
| **YIELDS** | A left-child of a token of the span. ~~Token~~ |
|
||
|
||
## Span.rights {#rights tag="property" model="parser"}
|
||
|
||
Tokens that are to the right of the span, whose heads are within the span.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like New York in Autumn.")
|
||
> rights = [t.text for t in doc[2:4].rights]
|
||
> assert rights == ["in"]
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ---------- | ----------------------------------------------- |
|
||
| **YIELDS** | A right-child of a token of the span. ~~Token~~ |
|
||
|
||
## Span.n_lefts {#n_lefts tag="property" model="parser"}
|
||
|
||
The number of tokens that are to the left of the span, whose heads are within
|
||
the span.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like New York in Autumn.")
|
||
> assert doc[3:7].n_lefts == 1
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ---------------------------------------- |
|
||
| **RETURNS** | The number of left-child tokens. ~~int~~ |
|
||
|
||
## Span.n_rights {#n_rights tag="property" model="parser"}
|
||
|
||
The number of tokens that are to the right of the span, whose heads are within
|
||
the span.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like New York in Autumn.")
|
||
> assert doc[2:4].n_rights == 1
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ----------------------------------------- |
|
||
| **RETURNS** | The number of right-child tokens. ~~int~~ |
|
||
|
||
## Span.subtree {#subtree tag="property" model="parser"}
|
||
|
||
Tokens within the span and tokens which descend from them.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("Give it back! He pleaded.")
|
||
> subtree = [t.text for t in doc[:3].subtree]
|
||
> assert subtree == ["Give", "it", "back", "!"]
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ---------- | ----------------------------------------------------------- |
|
||
| **YIELDS** | A token within the span, or a descendant from it. ~~Token~~ |
|
||
|
||
## Span.has_vector {#has_vector tag="property" model="vectors"}
|
||
|
||
A boolean value indicating whether a word vector is associated with the object.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like apples")
|
||
> assert doc[1:].has_vector
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ----------------------------------------------------- |
|
||
| **RETURNS** | Whether the span has a vector data attached. ~~bool~~ |
|
||
|
||
## Span.vector {#vector tag="property" model="vectors"}
|
||
|
||
A real-valued meaning representation. Defaults to an average of the token
|
||
vectors.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like apples")
|
||
> assert doc[1:].vector.dtype == "float32"
|
||
> assert doc[1:].vector.shape == (300,)
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ----------------------------------------------------------------------------------------------- |
|
||
| **RETURNS** | A 1-dimensional array representing the span's vector. ~~`numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||
|
||
## Span.vector_norm {#vector_norm tag="property" model="vectors"}
|
||
|
||
The L2 norm of the span's vector representation.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("I like apples")
|
||
> doc[1:].vector_norm # 4.800883928527915
|
||
> doc[2:].vector_norm # 6.895897646384268
|
||
> assert doc[1:].vector_norm != doc[2:].vector_norm
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | --------------------------------------------------- |
|
||
| **RETURNS** | The L2 norm of the vector representation. ~~float~~ |
|
||
|
||
## Span.sent {#sent tag="property" model="sentences"}
|
||
|
||
The sentence span that this span is a part of. This property is only available
|
||
when [sentence boundaries](/usage/linguistic-features#sbd) have been set on the
|
||
document by the `parser`, `senter`, `sentencizer` or some custom function. It
|
||
will raise an error otherwise.
|
||
|
||
If the span happens to cross sentence boundaries, only the first sentence will
|
||
be returned. If it is required that the sentence always includes the full span,
|
||
the result can be adjusted as such:
|
||
|
||
```python
|
||
sent = span.sent
|
||
sent = doc[sent.start : max(sent.end, span.end)]
|
||
```
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("Give it back! He pleaded.")
|
||
> span = doc[1:3]
|
||
> assert span.sent.text == "Give it back!"
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | ------------------------------------------------------- |
|
||
| **RETURNS** | The sentence span that this span is a part of. ~~Span~~ |
|
||
|
||
## Span.sents {#sents tag="property" model="sentences" new="3.2.1"}
|
||
|
||
Returns a generator over the sentences the span belongs to. This property is
|
||
only available when [sentence boundaries](/usage/linguistic-features#sbd) have
|
||
been set on the document by the `parser`, `senter`, `sentencizer` or some custom
|
||
function. It will raise an error otherwise.
|
||
|
||
If the span happens to cross sentence boundaries, all sentences the span
|
||
overlaps with will be returned.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("Give it back! He pleaded.")
|
||
> span = doc[2:4]
|
||
> assert len(span.sents) == 2
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------- | -------------------------------------------------------------------------- |
|
||
| **RETURNS** | A generator yielding sentences this `Span` is a part of ~~Iterable[Span]~~ |
|
||
|
||
## Attributes {#attributes}
|
||
|
||
| Name | Description |
|
||
| --------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
|
||
| `doc` | The parent document. ~~Doc~~ |
|
||
| `tensor` <Tag variant="new">2.1.7</Tag> | The span's slice of the parent `Doc`'s tensor. ~~numpy.ndarray~~ |
|
||
| `start` | The token offset for the start of the span. ~~int~~ |
|
||
| `end` | The token offset for the end of the span. ~~int~~ |
|
||
| `start_char` | The character offset for the start of the span. ~~int~~ |
|
||
| `end_char` | The character offset for the end of the span. ~~int~~ |
|
||
| `text` | A string representation of the span text. ~~str~~ |
|
||
| `text_with_ws` | The text content of the span with a trailing whitespace character if the last token has one. ~~str~~ |
|
||
| `orth` | ID of the verbatim text content. ~~int~~ |
|
||
| `orth_` | Verbatim text content (identical to `Span.text`). Exists mostly for consistency with the other attributes. ~~str~~ |
|
||
| `label` | The hash value of the span's label. ~~int~~ |
|
||
| `label_` | The span's label. ~~str~~ |
|
||
| `lemma_` | The span's lemma. Equivalent to `"".join(token.text_with_ws for token in span)`. ~~str~~ |
|
||
| `kb_id` | The hash value of the knowledge base ID referred to by the span. ~~int~~ |
|
||
| `kb_id_` | The knowledge base ID referred to by the span. ~~str~~ |
|
||
| `ent_id` | The hash value of the named entity the root token is an instance of. ~~int~~ |
|
||
| `ent_id_` | The string ID of the named entity the root token is an instance of. ~~str~~ |
|
||
| `id` | The hash value of the span's ID. ~~int~~ |
|
||
| `id_` | The span's ID. ~~str~~ |
|
||
| `sentiment` | A scalar value indicating the positivity or negativity of the span. ~~float~~ |
|
||
| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ |
|