mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* make disable_pipes deprecated in favour of the new toggle_pipes * rewrite disable_pipes statements * update documentation * remove bin/wiki_entity_linking folder * one more fix * remove deprecated link to documentation * few more doc fixes * add note about name change to the docs * restore original disable_pipes * small fixes * fix typo * fix error number to W096 * rename to select_pipes * also make changes to the documentation Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			184 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			184 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python
 | 
						|
# coding: utf8
 | 
						|
"""Train a convolutional neural network text classifier on the
 | 
						|
IMDB dataset, using the TextCategorizer component. The dataset will be loaded
 | 
						|
automatically via the package `ml_datasets`. The model is added to
 | 
						|
spacy.pipeline, and predictions are available via `doc.cats`. For more details,
 | 
						|
see the documentation:
 | 
						|
* Training: https://spacy.io/usage/training
 | 
						|
 | 
						|
Compatible with: spaCy v3.0.0+
 | 
						|
"""
 | 
						|
from __future__ import unicode_literals, print_function
 | 
						|
 | 
						|
import plac
 | 
						|
import random
 | 
						|
from pathlib import Path
 | 
						|
from ml_datasets import loaders
 | 
						|
 | 
						|
import spacy
 | 
						|
from spacy import util
 | 
						|
from spacy.util import minibatch, compounding
 | 
						|
from spacy.gold import Example, GoldParse
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    config_path=("Path to config file", "positional", None, Path),
 | 
						|
    output_dir=("Optional output directory", "option", "o", Path),
 | 
						|
    n_texts=("Number of texts to train from", "option", "t", int),
 | 
						|
    n_iter=("Number of training iterations", "option", "n", int),
 | 
						|
    init_tok2vec=("Pretrained tok2vec weights", "option", "t2v", Path),
 | 
						|
    dataset=("Dataset to train on (default: imdb)", "option", "d", str),
 | 
						|
    threshold=("Min. number of instances for a given label (default 20)", "option", "m", int)
 | 
						|
)
 | 
						|
def main(config_path, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None, dataset="imdb", threshold=20):
 | 
						|
    if not config_path or not config_path.exists():
 | 
						|
        raise ValueError(f"Config file not found at {config_path}")
 | 
						|
 | 
						|
    spacy.util.fix_random_seed()
 | 
						|
    if output_dir is not None:
 | 
						|
        output_dir = Path(output_dir)
 | 
						|
        if not output_dir.exists():
 | 
						|
            output_dir.mkdir()
 | 
						|
 | 
						|
    print(f"Loading nlp model from {config_path}")
 | 
						|
    nlp_config = util.load_config(config_path, create_objects=False)["nlp"]
 | 
						|
    nlp = util.load_model_from_config(nlp_config)
 | 
						|
 | 
						|
    # ensure the nlp object was defined with a textcat component
 | 
						|
    if "textcat" not in nlp.pipe_names:
 | 
						|
        raise ValueError(f"The nlp definition in the config does not contain a textcat component")
 | 
						|
 | 
						|
    textcat = nlp.get_pipe("textcat")
 | 
						|
 | 
						|
    # load the dataset
 | 
						|
    print(f"Loading dataset {dataset} ...")
 | 
						|
    (train_texts, train_cats), (dev_texts, dev_cats) = load_data(dataset=dataset, threshold=threshold, limit=n_texts)
 | 
						|
    print(
 | 
						|
        "Using {} examples ({} training, {} evaluation)".format(
 | 
						|
            n_texts, len(train_texts), len(dev_texts)
 | 
						|
        )
 | 
						|
    )
 | 
						|
    train_examples = []
 | 
						|
    for text, cats in zip(train_texts, train_cats):
 | 
						|
        doc = nlp.make_doc(text)
 | 
						|
        gold = GoldParse(doc, cats=cats)
 | 
						|
        for cat in cats:
 | 
						|
            textcat.add_label(cat)
 | 
						|
        ex = Example.from_gold(gold, doc=doc)
 | 
						|
        train_examples.append(ex)
 | 
						|
 | 
						|
    with nlp.select_pipes(enable="textcat"):  # only train textcat
 | 
						|
        optimizer = nlp.begin_training()
 | 
						|
        if init_tok2vec is not None:
 | 
						|
            with init_tok2vec.open("rb") as file_:
 | 
						|
                textcat.model.get_ref("tok2vec").from_bytes(file_.read())
 | 
						|
        print("Training the model...")
 | 
						|
        print("{:^5}\t{:^5}\t{:^5}\t{:^5}".format("LOSS", "P", "R", "F"))
 | 
						|
        batch_sizes = compounding(4.0, 32.0, 1.001)
 | 
						|
        for i in range(n_iter):
 | 
						|
            losses = {}
 | 
						|
            # batch up the examples using spaCy's minibatch
 | 
						|
            random.shuffle(train_examples)
 | 
						|
            batches = minibatch(train_examples, size=batch_sizes)
 | 
						|
            for batch in batches:
 | 
						|
                nlp.update(batch, sgd=optimizer, drop=0.2, losses=losses)
 | 
						|
            with textcat.model.use_params(optimizer.averages):
 | 
						|
                # evaluate on the dev data split off in load_data()
 | 
						|
                scores = evaluate(nlp.tokenizer, textcat, dev_texts, dev_cats)
 | 
						|
            print(
 | 
						|
                "{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}".format(  # print a simple table
 | 
						|
                    losses["textcat"],
 | 
						|
                    scores["textcat_p"],
 | 
						|
                    scores["textcat_r"],
 | 
						|
                    scores["textcat_f"],
 | 
						|
                )
 | 
						|
            )
 | 
						|
 | 
						|
    # test the trained model (only makes sense for sentiment analysis)
 | 
						|
    test_text = "This movie sucked"
 | 
						|
    doc = nlp(test_text)
 | 
						|
    print(test_text, doc.cats)
 | 
						|
 | 
						|
    if output_dir is not None:
 | 
						|
        with nlp.use_params(optimizer.averages):
 | 
						|
            nlp.to_disk(output_dir)
 | 
						|
        print("Saved model to", output_dir)
 | 
						|
 | 
						|
        # test the saved model
 | 
						|
        print("Loading from", output_dir)
 | 
						|
        nlp2 = spacy.load(output_dir)
 | 
						|
        doc2 = nlp2(test_text)
 | 
						|
        print(test_text, doc2.cats)
 | 
						|
 | 
						|
 | 
						|
def load_data(dataset, threshold, limit=0, split=0.8):
 | 
						|
    """Load data from the provided dataset."""
 | 
						|
    # Partition off part of the train data for evaluation
 | 
						|
    data_loader = loaders.get(dataset)
 | 
						|
    train_data, _ = data_loader(limit=int(limit/split))
 | 
						|
    random.shuffle(train_data)
 | 
						|
    texts, labels = zip(*train_data)
 | 
						|
 | 
						|
    unique_labels = sorted(set([l for label_set in labels for l in label_set]))
 | 
						|
    print(f"# of unique_labels: {len(unique_labels)}")
 | 
						|
 | 
						|
    count_values_train = dict()
 | 
						|
    for text, annot_list in train_data:
 | 
						|
        for annot in annot_list:
 | 
						|
            count_values_train[annot] = count_values_train.get(annot, 0) + 1
 | 
						|
    for value, count in sorted(count_values_train.items(), key=lambda item: item[1]):
 | 
						|
        if count < threshold:
 | 
						|
            unique_labels.remove(value)
 | 
						|
 | 
						|
    print(f"# of unique_labels after filtering with threshold {threshold}: {len(unique_labels)}")
 | 
						|
 | 
						|
    if unique_labels == {0, 1}:
 | 
						|
        cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in labels]
 | 
						|
    else:
 | 
						|
        cats = []
 | 
						|
        for y in labels:
 | 
						|
            if isinstance(y, str):
 | 
						|
                cats.append({str(label): (label == y) for label in unique_labels})
 | 
						|
            elif isinstance(y, set):
 | 
						|
                cats.append({str(label): (label in y) for label in unique_labels})
 | 
						|
            else:
 | 
						|
                raise ValueError(f"Unrecognised type of labels: {type(y)}")
 | 
						|
 | 
						|
    split = int(len(train_data) * split)
 | 
						|
    return (texts[:split], cats[:split]), (texts[split:], cats[split:])
 | 
						|
 | 
						|
 | 
						|
def evaluate(tokenizer, textcat, texts, cats):
 | 
						|
    docs = (tokenizer(text) for text in texts)
 | 
						|
    tp = 0.0  # True positives
 | 
						|
    fp = 1e-8  # False positives
 | 
						|
    fn = 1e-8  # False negatives
 | 
						|
    tn = 0.0  # True negatives
 | 
						|
    for i, doc in enumerate(textcat.pipe(docs)):
 | 
						|
        gold = cats[i]
 | 
						|
        for label, score in doc.cats.items():
 | 
						|
            if label not in gold:
 | 
						|
                continue
 | 
						|
            if label == "NEGATIVE":
 | 
						|
                continue
 | 
						|
            if score >= 0.5 and gold[label] >= 0.5:
 | 
						|
                tp += 1.0
 | 
						|
            elif score >= 0.5 and gold[label] < 0.5:
 | 
						|
                fp += 1.0
 | 
						|
            elif score < 0.5 and gold[label] < 0.5:
 | 
						|
                tn += 1
 | 
						|
            elif score < 0.5 and gold[label] >= 0.5:
 | 
						|
                fn += 1
 | 
						|
    precision = tp / (tp + fp)
 | 
						|
    recall = tp / (tp + fn)
 | 
						|
    if (precision + recall) == 0:
 | 
						|
        f_score = 0.0
 | 
						|
    else:
 | 
						|
        f_score = 2 * (precision * recall) / (precision + recall)
 | 
						|
    return {"textcat_p": precision, "textcat_r": recall, "textcat_f": f_score}
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    plac.call(main)
 |