mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			110 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			110 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import List
 | 
						|
 | 
						|
import numpy
 | 
						|
import pytest
 | 
						|
from numpy.testing import assert_almost_equal
 | 
						|
from spacy.vocab import Vocab
 | 
						|
from thinc.api import Model, data_validation, get_current_ops
 | 
						|
from thinc.types import Array2d, Ragged
 | 
						|
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.ml import FeatureExtractor, StaticVectors
 | 
						|
from spacy.ml._character_embed import CharacterEmbed
 | 
						|
from spacy.tokens import Doc
 | 
						|
 | 
						|
 | 
						|
OPS = get_current_ops()
 | 
						|
 | 
						|
texts = ["These are 4 words", "Here just three"]
 | 
						|
l0 = [[1, 2], [3, 4], [5, 6], [7, 8]]
 | 
						|
l1 = [[9, 8], [7, 6], [5, 4]]
 | 
						|
list_floats = [OPS.xp.asarray(l0, dtype="f"), OPS.xp.asarray(l1, dtype="f")]
 | 
						|
list_ints = [OPS.xp.asarray(l0, dtype="i"), OPS.xp.asarray(l1, dtype="i")]
 | 
						|
array = OPS.xp.asarray(l1, dtype="f")
 | 
						|
ragged = Ragged(array, OPS.xp.asarray([2, 1], dtype="i"))
 | 
						|
 | 
						|
 | 
						|
def get_docs():
 | 
						|
    vocab = Vocab()
 | 
						|
    for t in texts:
 | 
						|
        for word in t.split():
 | 
						|
            hash_id = vocab.strings.add(word)
 | 
						|
            vector = numpy.random.uniform(-1, 1, (7,))
 | 
						|
            vocab.set_vector(hash_id, vector)
 | 
						|
    docs = [English(vocab)(t) for t in texts]
 | 
						|
    return docs
 | 
						|
 | 
						|
 | 
						|
# Test components with a model of type Model[List[Doc], List[Floats2d]]
 | 
						|
@pytest.mark.parametrize("name", ["tagger", "tok2vec", "morphologizer", "senter"])
 | 
						|
def test_components_batching_list(name):
 | 
						|
    nlp = English()
 | 
						|
    proc = nlp.create_pipe(name)
 | 
						|
    util_batch_unbatch_docs_list(proc.model, get_docs(), list_floats)
 | 
						|
 | 
						|
 | 
						|
# Test components with a model of type Model[List[Doc], Floats2d]
 | 
						|
@pytest.mark.parametrize("name", ["textcat"])
 | 
						|
def test_components_batching_array(name):
 | 
						|
    nlp = English()
 | 
						|
    proc = nlp.create_pipe(name)
 | 
						|
    util_batch_unbatch_docs_array(proc.model, get_docs(), array)
 | 
						|
 | 
						|
 | 
						|
LAYERS = [
 | 
						|
    (CharacterEmbed(nM=5, nC=3), get_docs(), list_floats),
 | 
						|
    (FeatureExtractor([100, 200]), get_docs(), list_ints),
 | 
						|
    (StaticVectors(), get_docs(), ragged),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("model,in_data,out_data", LAYERS)
 | 
						|
def test_layers_batching_all(model, in_data, out_data):
 | 
						|
    # In = List[Doc]
 | 
						|
    if isinstance(in_data, list) and isinstance(in_data[0], Doc):
 | 
						|
        if isinstance(out_data, OPS.xp.ndarray) and out_data.ndim == 2:
 | 
						|
            util_batch_unbatch_docs_array(model, in_data, out_data)
 | 
						|
        elif (
 | 
						|
            isinstance(out_data, list)
 | 
						|
            and isinstance(out_data[0], OPS.xp.ndarray)
 | 
						|
            and out_data[0].ndim == 2
 | 
						|
        ):
 | 
						|
            util_batch_unbatch_docs_list(model, in_data, out_data)
 | 
						|
        elif isinstance(out_data, Ragged):
 | 
						|
            util_batch_unbatch_docs_ragged(model, in_data, out_data)
 | 
						|
 | 
						|
 | 
						|
def util_batch_unbatch_docs_list(
 | 
						|
    model: Model[List[Doc], List[Array2d]], in_data: List[Doc], out_data: List[Array2d]
 | 
						|
):
 | 
						|
    with data_validation(True):
 | 
						|
        model.initialize(in_data, out_data)
 | 
						|
        Y_batched = model.predict(in_data)
 | 
						|
        Y_not_batched = [model.predict([u])[0] for u in in_data]
 | 
						|
        for i in range(len(Y_batched)):
 | 
						|
            assert_almost_equal(
 | 
						|
                OPS.to_numpy(Y_batched[i]), OPS.to_numpy(Y_not_batched[i]), decimal=4
 | 
						|
            )
 | 
						|
 | 
						|
 | 
						|
def util_batch_unbatch_docs_array(
 | 
						|
    model: Model[List[Doc], Array2d], in_data: List[Doc], out_data: Array2d
 | 
						|
):
 | 
						|
    with data_validation(True):
 | 
						|
        model.initialize(in_data, out_data)
 | 
						|
        Y_batched = model.predict(in_data).tolist()
 | 
						|
        Y_not_batched = [model.predict([u])[0].tolist() for u in in_data]
 | 
						|
        assert_almost_equal(Y_batched, Y_not_batched, decimal=4)
 | 
						|
 | 
						|
 | 
						|
def util_batch_unbatch_docs_ragged(
 | 
						|
    model: Model[List[Doc], Ragged], in_data: List[Doc], out_data: Ragged
 | 
						|
):
 | 
						|
    with data_validation(True):
 | 
						|
        model.initialize(in_data, out_data)
 | 
						|
        Y_batched = model.predict(in_data).data.tolist()
 | 
						|
        Y_not_batched = []
 | 
						|
        for u in in_data:
 | 
						|
            Y_not_batched.extend(model.predict([u]).data.tolist())
 | 
						|
        assert_almost_equal(Y_batched, Y_not_batched, decimal=4)
 |