5.9 KiB
title | teaser |
---|---|
Transformers | Using transformer models like BERT in spaCy |
spaCy v3.0 lets you use almost any statistical model to power your pipeline.
You can use models implemented in a variety of frameworks, including TensorFlow,
PyTorch and MXNet. To keep things sane, spaCy expects models from these
frameworks to be wrapped with a common interface, using our machine learning
library Thinc. A transformer model is just a statistical
model, so the
spacy-transformers
package
actually has very little work to do: we just have to provide a few functions
that do the required plumbing. We also provide a pipeline component,
Transformer
, that lets you do multi-task learning and lets
you save the transformer outputs for later use.
Try out a BERT-based model pipeline using this project template: swap in your data, edit the settings and hyperparameters and train, evaluate, package and visualize your model.