mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-22 15:24:11 +03:00
765 lines
38 KiB
Markdown
765 lines
38 KiB
Markdown
---
|
||
title: What's New in v3.0
|
||
teaser: New features, backwards incompatibilities and migration guide
|
||
menu:
|
||
- ['Summary', 'summary']
|
||
- ['New Features', 'features']
|
||
- ['Backwards Incompatibilities', 'incompat']
|
||
- ['Migrating from v2.x', 'migrating']
|
||
---
|
||
|
||
## Summary {#summary}
|
||
|
||
<Grid cols={2}>
|
||
|
||
<div>
|
||
|
||
</div>
|
||
|
||
<Infobox title="Table of Contents" id="toc">
|
||
|
||
- [Summary](#summary)
|
||
- [New features](#features)
|
||
- [Training & config system](#features-training)
|
||
- [Transformer-based pipelines](#features-transformers)
|
||
- [Custom models](#features-custom-models)
|
||
- [End-to-end project workflows](#features-projects)
|
||
- [New built-in components](#features-pipeline-components)
|
||
- [New custom component API](#features-components)
|
||
- [Python type hints](#features-types)
|
||
- [New methods & attributes](#new-methods)
|
||
- [New & updated documentation](#new-docs)
|
||
- [Backwards incompatibilities](#incompat)
|
||
- [Migrating from spaCy v2.x](#migrating)
|
||
|
||
</Infobox>
|
||
|
||
</Grid>
|
||
|
||
## New Features {#features}
|
||
|
||
### New training workflow and config system {#features-training}
|
||
|
||
<Infobox title="Details & Documentation" emoji="📖" list>
|
||
|
||
- **Usage:** [Training models](/usage/training)
|
||
- **Thinc:** [Thinc's config system](https://thinc.ai/docs/usage-config),
|
||
[`Config`](https://thinc.ai/docs/api-config#config)
|
||
- **CLI:** [`train`](/api/cli#train), [`pretrain`](/api/cli#pretrain),
|
||
[`evaluate`](/api/cli#evaluate)
|
||
- **API:** [Config format](/api/data-formats#config),
|
||
[`registry`](/api/top-level#registry)
|
||
|
||
</Infobox>
|
||
|
||
### Transformer-based pipelines {#features-transformers}
|
||
|
||
![Pipeline components listening to shared embedding component](../images/tok2vec-listener.svg)
|
||
|
||
<Infobox title="Details & Documentation" emoji="📖" list>
|
||
|
||
- **Usage:** [Embeddings & Transformers](/usage/embeddings-transformers),
|
||
[Training models](/usage/training)
|
||
- **API:** [`Transformer`](/api/transformer),
|
||
[`TransformerData`](/api/transformer#transformerdata),
|
||
[`FullTransformerBatch`](/api/transformer#fulltransformerbatch)
|
||
- **Architectures: ** [TransformerModel](/api/architectures#TransformerModel),
|
||
[Tok2VecListener](/api/architectures#transformers-Tok2VecListener),
|
||
[Tok2VecTransformer](/api/architectures#Tok2VecTransformer)
|
||
- **Models:** [`en_core_trf_lg_sm`](/models/en)
|
||
- **Implementation:**
|
||
[`spacy-transformers`](https://github.com/explosion/spacy-transformers)
|
||
|
||
</Infobox>
|
||
|
||
### Custom models using any framework {#features-custom-models}
|
||
|
||
<Infobox title="Details & Documentation" emoji="📖" list>
|
||
|
||
<!-- TODO: link to new custom models page -->
|
||
|
||
- **Thinc: **
|
||
[Wrapping PyTorch, TensorFlow & MXNet](https://thinc.ai/docs/usage-frameworks)
|
||
- **API:** [Model architectures](/api/architectures), [`Pipe`](/api/pipe)
|
||
|
||
</Infobox>
|
||
|
||
### Manage end-to-end workflows with projects {#features-projects}
|
||
|
||
<!-- TODO: update example -->
|
||
|
||
> #### Example
|
||
>
|
||
> ```cli
|
||
> # Clone a project template
|
||
> $ python -m spacy project clone example
|
||
> $ cd example
|
||
> # Download data assets
|
||
> $ python -m spacy project assets
|
||
> # Run a workflow
|
||
> $ python -m spacy project run train
|
||
> ```
|
||
|
||
spaCy projects let you manage and share **end-to-end spaCy workflows** for
|
||
different **use cases and domains**, and orchestrate training, packaging and
|
||
serving your custom models. You can start off by cloning a pre-defined project
|
||
template, adjust it to fit your needs, load in your data, train a model, export
|
||
it as a Python package, upload your outputs to a remote storage and share your
|
||
results with your team.
|
||
|
||
![Illustration of project workflow and commands](../images/projects.svg)
|
||
|
||
spaCy projects also make it easy to **integrate with other tools** in the data
|
||
science and machine learning ecosystem, including [DVC](/usage/projects#dvc) for
|
||
data version control, [Prodigy](/usage/projects#prodigy) for creating labelled
|
||
data, [Streamlit](/usage/projects#streamlit) for building interactive apps,
|
||
[FastAPI](/usage/projects#fastapi) for serving models in production,
|
||
[Ray](/usage/projects#ray) for parallel training,
|
||
[Weights & Biases](/usage/projects#wandb) for experiment tracking, and more!
|
||
|
||
<!-- <Project id="some_example_project">
|
||
|
||
The easiest way to get started with an end-to-end training process is to clone a
|
||
[project](/usage/projects) template. Projects let you manage multi-step
|
||
workflows, from data preprocessing to training and packaging your model.
|
||
|
||
</Project>-->
|
||
|
||
<Infobox title="Details & Documentation" emoji="📖" list>
|
||
|
||
- **Usage:** [spaCy projects](/usage/projects),
|
||
[Training models](/usage/training)
|
||
- **CLI:** [`project`](/api/cli#project), [`train`](/api/cli#train)
|
||
- **Templates:** [`projects`](https://github.com/explosion/projects)
|
||
|
||
</Infobox>
|
||
|
||
### New built-in pipeline components {#features-pipeline-components}
|
||
|
||
spaCy v3.0 includes several new trainable and rule-based components that you can
|
||
add to your pipeline and customize for your use case:
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> nlp = spacy.blank("en")
|
||
> nlp.add_pipe("lemmatizer")
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ----------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| [`SentenceRecognizer`](/api/sentencerecognizer) | Trainable component for sentence segmentation. |
|
||
| [`Morphologizer`](/api/morphologizer) | Trainable component to predict morphological features. |
|
||
| [`Lemmatizer`](/api/lemmatizer) | Standalone component for rule-based and lookup lemmatization. |
|
||
| [`AttributeRuler`](/api/attributeruler) | Component for setting token attributes using match patterns. |
|
||
| [`Transformer`](/api/transformer) | Component for using [transformer models](/usage/embeddings-transformers) in your pipeline, accessing outputs and aligning tokens. Provided via [`spacy-transformers`](https://github.com/explosion/spacy-transformers). |
|
||
|
||
<Infobox title="Details & Documentation" emoji="📖" list>
|
||
|
||
- **Usage:** [Processing pipelines](/usage/processing-pipelines)
|
||
- **API:** [Built-in pipeline components](/api#architecture-pipeline)
|
||
- **Implementation:**
|
||
[`spacy/pipeline`](https://github.com/explosion/spaCy/tree/develop/spacy/pipeline)
|
||
|
||
</Infobox>
|
||
|
||
### New and improved pipeline component APIs {#features-components}
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> @Language.component("my_component")
|
||
> def my_component(doc):
|
||
> return doc
|
||
>
|
||
> nlp.add_pipe("my_component")
|
||
> nlp.add_pipe("ner", source=other_nlp)
|
||
> nlp.analyze_pipes(pretty=True)
|
||
> ```
|
||
|
||
Defining, configuring, reusing, training and analyzing pipeline components is
|
||
now easier and more convenient. The `@Language.component` and
|
||
`@Language.factory` decorators let you register your component, define its
|
||
default configuration and meta data, like the attribute values it assigns and
|
||
requires. Any custom component can be included during training, and sourcing
|
||
components from existing pretrained models lets you **mix and match custom
|
||
pipelines**. The `nlp.analyze_pipes` method outputs structured information about
|
||
the current pipeline and its components, including the attributes they assign,
|
||
the scores they compute during training and whether any required attributes
|
||
aren't set.
|
||
|
||
<Infobox title="Details & Documentation" emoji="📖" list>
|
||
|
||
- **Usage:** [Custom components](/usage/processing-pipelines#custom_components),
|
||
[Defining components for training](/usage/training#config-components)
|
||
- **API:** [`@Language.component`](/api/language#component),
|
||
[`@Language.factory`](/api/language#factory),
|
||
[`Language.add_pipe`](/api/language#add_pipe),
|
||
[`Language.analyze_pipes`](/api/language#analyze_pipes)
|
||
- **Implementation:**
|
||
[`spacy/language.py`](https://github.com/explosion/spaCy/tree/develop/spacy/language.py)
|
||
|
||
</Infobox>
|
||
|
||
### Type hints and type-based data validation {#features-types}
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.language import Language
|
||
> from pydantic import StrictBool
|
||
>
|
||
> @Language.factory("my_component")
|
||
> def create_my_component(
|
||
> nlp: Language,
|
||
> name: str,
|
||
> custom: StrictBool
|
||
> ):
|
||
> ...
|
||
> ```
|
||
|
||
spaCy v3.0 officially drops support for Python 2 and now requires **Python
|
||
3.6+**. This also means that the code base can take full advantage of
|
||
[type hints](https://docs.python.org/3/library/typing.html). spaCy's user-facing
|
||
API that's implemented in pure Python (as opposed to Cython) now comes with type
|
||
hints. The new version of spaCy's machine learning library
|
||
[Thinc](https://thinc.ai) also features extensive
|
||
[type support](https://thinc.ai/docs/usage-type-checking/), including custom
|
||
types for models and arrays, and a custom `mypy` plugin that can be used to
|
||
type-check model definitions.
|
||
|
||
For data validation, spacy v3.0 adopts
|
||
[`pydantic`](https://github.com/samuelcolvin/pydantic). It also powers the data
|
||
validation of Thinc's [config system](https://thinc.ai/docs/usage-config), which
|
||
lets you to register **custom functions with typed arguments**, reference them
|
||
in your config and see validation errors if the argument values don't match.
|
||
|
||
<Infobox title="Details & Documentation" emoji="📖" list>
|
||
|
||
- **Usage: **
|
||
[Component type hints and validation](/usage/processing-pipelines#type-hints),
|
||
[Training with custom code](/usage/training#custom-code)
|
||
- **Thinc: **
|
||
[Type checking in Thinc](https://thinc.ai/docs/usage-type-checking),
|
||
[Thinc's config system](https://thinc.ai/docs/usage-config)
|
||
|
||
</Infobox>
|
||
|
||
### New methods, attributes and commands {#new-methods}
|
||
|
||
The following methods, attributes and commands are new in spaCy v3.0.
|
||
|
||
| Name | Description |
|
||
| ----------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||
| [`Token.lex`](/api/token#attributes) | Access a token's [`Lexeme`](/api/lexeme). |
|
||
| [`Token.morph`](/api/token#attributes) [`Token.morph_`](/api/token#attributes) | Access a token's morphological analysis. |
|
||
| [`Language.select_pipes`](/api/language#select_pipes) | Context manager for enabling or disabling specific pipeline components for a block. |
|
||
| [`Language.analyze_pipes`](/api/language#analyze_pipes) | [Analyze](/usage/processing-pipelines#analysis) components and their interdependencies. |
|
||
| [`Language.resume_training`](/api/language#resume_training) | Experimental: continue training a pretrained model and initialize "rehearsal" for components that implement a `rehearse` method to prevent catastrophic forgetting. |
|
||
| [`@Language.factory`](/api/language#factory) [`@Language.component`](/api/language#component) | Decorators for [registering](/usage/processing-pipelines#custom-components) pipeline component factories and simple stateless component functions. |
|
||
| [`Language.has_factory`](/api/language#has_factory) | Check whether a component factory is registered on a language class.s |
|
||
| [`Language.get_factory_meta`](/api/language#get_factory_meta) [`Language.get_pipe_meta`](/api/language#get_factory_meta) | Get the [`FactoryMeta`](/api/language#factorymeta) with component metadata for a factory or instance name. |
|
||
| [`Language.config`](/api/language#config) | The [config](/usage/training#config) used to create the current `nlp` object. An instance of [`Config`](https://thinc.ai/docs/api-config#config) and can be saved to disk and used for training. |
|
||
| [`Pipe.score`](/api/pipe#score) | Method on trainable pipeline components that returns a dictionary of evaluation scores. |
|
||
| [`registry`](/api/top-level#registry) | Function registry to map functions to string names that can be referenced in [configs](/usage/training#config). |
|
||
| [`util.load_meta`](/api/top-level#util.load_meta) [`util.load_config`](/api/top-level#util.load_config) | Updated helpers for loading a model's [`meta.json`](/api/data-formats#meta) and [`config.cfg`](/api/data-formats#config). |
|
||
| [`util.get_installed_models`](/api/top-level#util.get_installed_models) | Names of all models installed in the environment. |
|
||
| [`init config`](/api/cli#init-config) [`init fill-config`](/api/cli#init-fill-config) [`debug config`](/api/cli#debug-config) | CLI commands for initializing, auto-filling and debugging [training configs](/usage/training). |
|
||
| [`project`](/api/cli#project) | Suite of CLI commands for cloning, running and managing [spaCy projects](/usage/projects). |
|
||
|
||
### New and updated documentation {#new-docs}
|
||
|
||
<Grid cols={2} gutterBottom={false}>
|
||
|
||
<div>
|
||
|
||
To help you get started with spaCy v3.0 and the new features, we've added
|
||
several new or rewritten documentation pages, including a new usage guide on
|
||
[embeddings, transformers and transfer learning](/usage/embeddings-transformers),
|
||
a guide on [training models](/usage/training) rewritten from scratch, a page
|
||
explaining the new [spaCy projects](/usage/projects) and updated usage
|
||
documentation on
|
||
[custom pipeline components](/usage/processing-pipelines#custom-components).
|
||
We've also added a bunch of new illustrations and new API reference pages
|
||
documenting spaCy's machine learning [model architectures](/api/architectures)
|
||
and the expected [data formats](/api/data-formats). API pages about
|
||
[pipeline components](/api/#architecture-pipeline) now include more information,
|
||
like the default config and implementation, and we've adopted a more detailed
|
||
format for documenting argument and return types.
|
||
|
||
</div>
|
||
|
||
[![Library architecture](../images/architecture.svg)](/api)
|
||
|
||
</Grid>
|
||
|
||
<Infobox title="New or reworked documentation" emoji="📖" list>
|
||
|
||
- **Usage: ** [Embeddings & Transformers](/usage/embeddings-transformers),
|
||
[Training models](/usage/training),
|
||
[Layers & Architectures](/usage/layers-architectures),
|
||
[Projects](/usage/projects),
|
||
[Custom pipeline components](/usage/processing-pipelines#custom-components),
|
||
[Custom tokenizers](/usage/linguistic-features#custom-tokenizer)
|
||
- **API Reference: ** [Library architecture](/api),
|
||
[Model architectures](/api/architectures), [Data formats](/api/data-formats)
|
||
- **New Classes: ** [`Example`](/api/example), [`Tok2Vec`](/api/tok2vec),
|
||
[`Transformer`](/api/transformer), [`Lemmatizer`](/api/lemmatizer),
|
||
[`Morphologizer`](/api/morphologizer),
|
||
[`AttributeRuler`](/api/attributeruler),
|
||
[`SentenceRecognizer`](/api/sentencerecognizer), [`Pipe`](/api/pipe),
|
||
[`Corpus`](/api/corpus)
|
||
|
||
</Infobox>
|
||
|
||
## Backwards Incompatibilities {#incompat}
|
||
|
||
As always, we've tried to keep the breaking changes to a minimum and focus on
|
||
changes that were necessary to support the new features, fix problems or improve
|
||
usability. The following section lists the relevant changes to the user-facing
|
||
API. For specific examples of how to rewrite your code, check out the
|
||
[migration guide](#migrating).
|
||
|
||
<Infobox variant="warning">
|
||
|
||
Note that spaCy v3.0 now requires **Python 3.6+**.
|
||
|
||
</Infobox>
|
||
|
||
### API changes {#incompat-api}
|
||
|
||
- Model symlinks, the `link` command and shortcut names are now deprecated.
|
||
There can be many [different models](/models) and not just one "English
|
||
model", so you should always use the full model name like
|
||
[`en_core_web_sm`](/models/en) explicitly.
|
||
- A model's [`meta.json`](/api/data-formats#meta) is now only used to provide
|
||
meta information like the model name, author, license and labels. It's **not**
|
||
used to construct the processing pipeline anymore. This is all defined in the
|
||
[`config.cfg`](/api/data-formats#config), which also includes all settings
|
||
used to train the model.
|
||
- The [`train`](/api/cli#train) and [`pretrain`](/api/cli#pretrain) commands now
|
||
only take a `config.cfg` file containing the full
|
||
[training config](/usage/training#config).
|
||
- [`Language.add_pipe`](/api/language#add_pipe) now takes the **string name** of
|
||
the component factory instead of the component function.
|
||
- **Custom pipeline components** now need to be decorated with the
|
||
[`@Language.component`](/api/language#component) or
|
||
[`@Language.factory`](/api/language#factory) decorator.
|
||
- [`Language.update`](/api/language#update) now takes a batch of
|
||
[`Example`](/api/example) objects instead of raw texts and annotations, or
|
||
`Doc` and `GoldParse` objects.
|
||
- The `Language.disable_pipes` context manager has been replaced by
|
||
[`Language.select_pipes`](/api/language#select_pipes), which can explicitly
|
||
disable or enable components.
|
||
- The [`Language.update`](/api/language#update),
|
||
[`Language.evaluate`](/api/language#evaluate) and
|
||
[`Pipe.update`](/api/pipe#update) methods now all take batches of
|
||
[`Example`](/api/example) objects instead of `Doc` and `GoldParse` objects, or
|
||
raw text and a dictionary of annotations.
|
||
[`Language.begin_training`](/api/language#begin_training) and
|
||
[`Pipe.begin_training`](/api/pipe#begin_training) now take a function that
|
||
returns a sequence of `Example` objects to initialize the model instead of a
|
||
list of tuples.
|
||
- [`Matcher.add`](/api/matcher#add),
|
||
[`PhraseMatcher.add`](/api/phrasematcher#add) and
|
||
[`DependencyMatcher.add`](/api/dependencymatcher#add) now only accept a list
|
||
of patterns as the second argument (instead of a variable number of
|
||
arguments). The `on_match` callback becomes an optional keyword argument.
|
||
- The `PRON_LEMMA` symbol and `-PRON-` as an indicator for pronoun lemmas has
|
||
been removed.
|
||
|
||
### Removed or renamed API {#incompat-removed}
|
||
|
||
| Removed | Replacement |
|
||
| -------------------------------------------------------- | ------------------------------------------------------------------------------------------ |
|
||
| `Language.disable_pipes` | [`Language.select_pipes`](/api/language#select_pipes) |
|
||
| `GoldParse` | [`Example`](/api/example) |
|
||
| `GoldCorpus` | [`Corpus`](/api/corpus) |
|
||
| `KnowledgeBase.load_bulk`, `KnowledgeBase.dump` | [`KnowledgeBase.from_disk`](/api/kb#from_disk), [`KnowledgeBase.to_disk`](/api/kb#to_disk) |
|
||
| `spacy init-model` | [`spacy init model`](/api/cli#init-model) |
|
||
| `spacy debug-data` | [`spacy debug data`](/api/cli#debug-data) |
|
||
| `spacy profile` | [`spacy debug profile`](/api/cli#debug-profile) |
|
||
| `spacy link`, `util.set_data_path`, `util.get_data_path` | not needed, model symlinks are deprecated |
|
||
|
||
The following deprecated methods, attributes and arguments were removed in v3.0.
|
||
Most of them have been **deprecated for a while** and many would previously
|
||
raise errors. Many of them were also mostly internals. If you've been working
|
||
with more recent versions of spaCy v2.x, it's **unlikely** that your code relied
|
||
on them.
|
||
|
||
| Removed | Replacement |
|
||
| ----------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `Doc.tokens_from_list` | [`Doc.__init__`](/api/doc#init) |
|
||
| `Doc.merge`, `Span.merge` | [`Doc.retokenize`](/api/doc#retokenize) |
|
||
| `Token.string`, `Span.string`, `Span.upper`, `Span.lower` | [`Span.text`](/api/span#attributes), [`Token.text`](/api/token#attributes) |
|
||
| `Language.tagger`, `Language.parser`, `Language.entity` | [`Language.get_pipe`](/api/language#get_pipe) |
|
||
| keyword-arguments like `vocab=False` on `to_disk`, `from_disk`, `to_bytes`, `from_bytes` | `exclude=["vocab"]` |
|
||
| `n_threads` argument on [`Tokenizer`](/api/tokenizer), [`Matcher`](/api/matcher), [`PhraseMatcher`](/api/phrasematcher) | `n_process` |
|
||
| `verbose` argument on [`Language.evaluate`](/api/language#evaluate) | logging (`DEBUG`) |
|
||
| `SentenceSegmenter` hook, `SimilarityHook` | [user hooks](/usage/processing-pipelines#custom-components-user-hooks), [`Sentencizer`](/api/sentencizer), [`SentenceRecognizer`](/api/sentenceregognizer) |
|
||
|
||
## Migrating from v2.x {#migrating}
|
||
|
||
### Downloading and loading models {#migrating-downloading-models}
|
||
|
||
Model symlinks and shortcuts like `en` are now officially deprecated. There are
|
||
[many different models](/models) with different capabilities and not just one
|
||
"English model". In order to download and load a model, you should always use
|
||
its full name – for instance, [`en_core_web_sm`](/models/en#en_core_web_sm).
|
||
|
||
```diff
|
||
- python -m spacy download en
|
||
+ python -m spacy download en_core_web_sm
|
||
```
|
||
|
||
```diff
|
||
- nlp = spacy.load("en")
|
||
+ nlp = spacy.load("en_core_web_sm")
|
||
```
|
||
|
||
### Custom pipeline components and factories {#migrating-pipeline-components}
|
||
|
||
Custom pipeline components now have to be registered explicitly using the
|
||
[`@Language.component`](/api/language#component) or
|
||
[`@Language.factory`](/api/language#factory) decorator. For simple functions
|
||
that take a `Doc` and return it, all you have to do is add the
|
||
`@Language.component` decorator to it and assign it a name:
|
||
|
||
```diff
|
||
### Stateless function components
|
||
+ from spacy.language import Language
|
||
|
||
+ @Language.component("my_component")
|
||
def my_component(doc):
|
||
return doc
|
||
```
|
||
|
||
For class components that are initialized with settings and/or the shared `nlp`
|
||
object, you can use the `@Language.factory` decorator. Also make sure that that
|
||
the method used to initialize the factory has **two named arguments**: `nlp`
|
||
(the current `nlp` object) and `name` (the string name of the component
|
||
instance).
|
||
|
||
```diff
|
||
### Stateful class components
|
||
+ from spacy.language import Language
|
||
|
||
+ @Language.factory("my_component")
|
||
class MyComponent:
|
||
- def __init__(self, nlp):
|
||
+ def __init__(self, nlp, name):
|
||
self.nlp = nlp
|
||
|
||
def __call__(self, doc):
|
||
return doc
|
||
```
|
||
|
||
Instead of decorating your class, you could also add a factory function that
|
||
takes the arguments `nlp` and `name` and returns an instance of your component:
|
||
|
||
```diff
|
||
### Stateful class components with factory function
|
||
+ from spacy.language import Language
|
||
|
||
+ @Language.factory("my_component")
|
||
+ def create_my_component(nlp, name):
|
||
+ return MyComponent(nlp)
|
||
|
||
class MyComponent:
|
||
def __init__(self, nlp):
|
||
self.nlp = nlp
|
||
|
||
def __call__(self, doc):
|
||
return doc
|
||
```
|
||
|
||
The `@Language.component` and `@Language.factory` decorators now take care of
|
||
adding an entry to the component factories, so spaCy knows how to load a
|
||
component back in from its string name. You won't have to write to
|
||
`Language.factories` manually anymore.
|
||
|
||
```diff
|
||
- Language.factories["my_component"] = lambda nlp, **cfg: MyComponent(nlp)
|
||
```
|
||
|
||
#### Adding components to the pipeline {#migrating-add-pipe}
|
||
|
||
The [`nlp.add_pipe`](/api/language#add_pipe) method now takes the **string
|
||
name** of the component factory instead of a callable component. This allows
|
||
spaCy to track and serialize components that have been added and their settings.
|
||
|
||
```diff
|
||
+ @Language.component("my_component")
|
||
def my_component(doc):
|
||
return doc
|
||
|
||
- nlp.add_pipe(my_component)
|
||
+ nlp.add_pipe("my_component")
|
||
```
|
||
|
||
[`nlp.add_pipe`](/api/language#add_pipe) now also returns the pipeline component
|
||
itself, so you can access its attributes. The
|
||
[`nlp.create_pipe`](/api/language#create_pipe) method is now mostly internals
|
||
and you typically shouldn't have to use it in your code.
|
||
|
||
```diff
|
||
- parser = nlp.create_pipe("parser")
|
||
- nlp.add_pipe(parser)
|
||
+ parser = nlp.add_pipe("parser")
|
||
```
|
||
|
||
If you need to add a component from an existing pretrained model, you can now
|
||
use the `source` argument on [`nlp.add_pipe`](/api/language#add_pipe). This will
|
||
check that the component is compatible, and take care of porting over all
|
||
config. During training, you can also reference existing pretrained components
|
||
in your [config](/usage/training#config-components) and decide whether or not
|
||
they should be updated with more data.
|
||
|
||
> #### config.cfg (excerpt)
|
||
>
|
||
> ```ini
|
||
> [components.ner]
|
||
> source = "en_core_web_sm"
|
||
> component = "ner"
|
||
> ```
|
||
|
||
```diff
|
||
source_nlp = spacy.load("en_core_web_sm")
|
||
nlp = spacy.blank("en")
|
||
- ner = source_nlp.get_pipe("ner")
|
||
- nlp.add_pipe(ner)
|
||
+ nlp.add_pipe("ner", source=source_nlp)
|
||
```
|
||
|
||
### Adding match patterns {#migrating-matcher}
|
||
|
||
The [`Matcher.add`](/api/matcher#add),
|
||
[`PhraseMatcher.add`](/api/phrasematcher#add) and
|
||
[`DependencyMatcher.add`](/api/dependencymatcher#add) methods now only accept a
|
||
**list of patterns** as the second argument (instead of a variable number of
|
||
arguments). The `on_match` callback becomes an optional keyword argument.
|
||
|
||
```diff
|
||
matcher = Matcher(nlp.vocab)
|
||
patterns = [[{"TEXT": "Google"}, {"TEXT": "Now"}], [{"TEXT": "GoogleNow"}]]
|
||
- matcher.add("GoogleNow", on_match, *patterns)
|
||
+ matcher.add("GoogleNow", patterns, on_match=on_match)
|
||
```
|
||
|
||
```diff
|
||
matcher = PhraseMatcher(nlp.vocab)
|
||
patterns = [nlp("health care reform"), nlp("healthcare reform")]
|
||
- matcher.add("HEALTH", on_match, *patterns)
|
||
+ matcher.add("HEALTH", patterns, on_match=on_match)
|
||
```
|
||
|
||
### Training models {#migrating-training}
|
||
|
||
To train your models, you should now pretty much always use the
|
||
[`spacy train`](/api/cli#train) CLI. You shouldn't have to put together your own
|
||
training scripts anymore, unless you _really_ want to. The training commands now
|
||
use a [flexible config file](/usage/training#config) that describes all training
|
||
settings and hyperparameters, as well as your pipeline, model components and
|
||
architectures to use. The `--code` argument lets you pass in code containing
|
||
[custom registered functions](/usage/training#custom-code) that you can
|
||
reference in your config. To get started, check out the
|
||
[quickstart widget](/usage/training#quickstart).
|
||
|
||
#### Binary .spacy training data format {#migrating-training-format}
|
||
|
||
spaCy v3.0 uses a new
|
||
[binary training data format](/api/data-formats#binary-training) created by
|
||
serializing a [`DocBin`](/api/docbin), which represents a collection of `Doc`
|
||
objects. This means that you can train spaCy models using the same format it
|
||
outputs: annotated `Doc` objects. The binary format is extremely **efficient in
|
||
storage**, especially when packing multiple documents together. You can convert
|
||
your existing JSON-formatted data using the [`spacy convert`](/api/cli#convert)
|
||
command, which outputs `.spacy` files:
|
||
|
||
```cli
|
||
$ python -m spacy convert ./training.json ./output
|
||
```
|
||
|
||
#### Training config {#migrating-training-config}
|
||
|
||
The easiest way to get started with a training config is to use the
|
||
[`init config`](/api/cli#init-config) command or the
|
||
[quickstart widget](/usage/training#quickstart). You can define your
|
||
requirements, and it will auto-generate a starter config with the best-matching
|
||
default settings.
|
||
|
||
```cli
|
||
$ python -m spacy init config ./config.cfg --lang en --pipeline tagger,parser
|
||
```
|
||
|
||
If you've exported a starter config from our
|
||
[quickstart widget](/usage/training#quickstart), you can use the
|
||
[`init fill-config`](/api/cli#init-fill-config) to fill it with all default
|
||
values. You can then use the auto-generated `config.cfg` for training:
|
||
|
||
```diff
|
||
### {wrap="true"}
|
||
- python -m spacy train en ./output ./train.json ./dev.json --pipeline tagger,parser --cnn-window 1 --bilstm-depth 0
|
||
+ python -m spacy train ./config.cfg --output ./output
|
||
```
|
||
|
||
<!-- TODO:
|
||
|
||
<Project id="some_example_project">
|
||
|
||
The easiest way to get started with an end-to-end training process is to clone a
|
||
[project](/usage/projects) template. Projects let you manage multi-step
|
||
workflows, from data preprocessing to training and packaging your model.
|
||
|
||
</Project>
|
||
|
||
-->
|
||
|
||
#### Training via the Python API {#migrating-training-python}
|
||
|
||
For most use cases, you **shouldn't** have to write your own training scripts
|
||
anymore. Instead, you can use [`spacy train`](/api/cli#train) with a
|
||
[config file](/usage/training#config) and custom
|
||
[registered functions](/usage/training#custom-code) if needed. You can even
|
||
register callbacks that can modify the `nlp` object at different stages of its
|
||
lifecycle to fully customize it before training.
|
||
|
||
If you do decide to use the [internal training API](/usage/training#api) from
|
||
Python, you should only need a few small modifications to convert your scripts
|
||
from spaCy v2.x to v3.x. The [`Example.from_dict`](/api/example#from_dict)
|
||
classmethod takes a reference `Doc` and a
|
||
[dictionary of annotations](/api/data-formats#dict-input), similar to the
|
||
"simple training style" in spaCy v2.x:
|
||
|
||
```diff
|
||
### Migrating Doc and GoldParse
|
||
doc = nlp.make_doc("Mark Zuckerberg is the CEO of Facebook")
|
||
entities = [(0, 15, "PERSON"), (30, 38, "ORG")]
|
||
- gold = GoldParse(doc, entities=entities)
|
||
+ example = Example.from_dict(doc, {"entities": entities})
|
||
```
|
||
|
||
```diff
|
||
### Migrating simple training style
|
||
text = "Mark Zuckerberg is the CEO of Facebook"
|
||
annotations = {"entities": [(0, 15, "PERSON"), (30, 38, "ORG")]}
|
||
+ doc = nlp.make_doc(text)
|
||
+ example = Example.from_dict(doc, annotations)
|
||
```
|
||
|
||
The [`Language.update`](/api/language#update),
|
||
[`Language.evaluate`](/api/language#evaluate) and
|
||
[`Pipe.update`](/api/pipe#update) methods now all take batches of
|
||
[`Example`](/api/example) objects instead of `Doc` and `GoldParse` objects, or
|
||
raw text and a dictionary of annotations.
|
||
|
||
```python
|
||
### Training loop {highlight="11"}
|
||
TRAIN_DATA = [
|
||
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
|
||
("I like London.", {"entities": [(7, 13, "LOC")]}),
|
||
]
|
||
nlp.begin_training()
|
||
for i in range(20):
|
||
random.shuffle(TRAIN_DATA)
|
||
for batch in minibatch(TRAIN_DATA):
|
||
examples = []
|
||
for text, annots in batch:
|
||
examples.append(Example.from_dict(nlp.make_doc(text), annots))
|
||
nlp.update(examples)
|
||
```
|
||
|
||
[`Language.begin_training`](/api/language#begin_training) and
|
||
[`Pipe.begin_training`](/api/pipe#begin_training) now take a function that
|
||
returns a sequence of `Example` objects to initialize the model instead of a
|
||
list of tuples. The data examples are used to **initialize the models** of
|
||
trainable pipeline components, which includes validating the network,
|
||
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
|
||
setting up the label scheme.
|
||
|
||
```diff
|
||
- nlp.begin_training(examples)
|
||
+ nlp.begin_training(lambda: examples)
|
||
```
|
||
|
||
#### Packaging models {#migrating-training-packaging}
|
||
|
||
The [`spacy package`](/api/cli#package) command now automatically builds the
|
||
installable `.tar.gz` sdist of the Python package, so you don't have to run this
|
||
step manually anymore. You can disable the behavior by setting the `--no-sdist`
|
||
flag.
|
||
|
||
```diff
|
||
python -m spacy package ./model ./packages
|
||
- cd /output/en_model-0.0.0
|
||
- python setup.py sdist
|
||
```
|
||
|
||
#### Migration notes for plugin maintainers {#migrating-plugins}
|
||
|
||
Thanks to everyone who's been contributing to the spaCy ecosystem by developing
|
||
and maintaining one of the many awesome [plugins and extensions](/universe).
|
||
We've tried to make it as easy as possible for you to upgrade your packages for
|
||
spaCy v3. The most common use case for plugins is providing pipeline components
|
||
and extension attributes. When migrating your plugin, double-check the
|
||
following:
|
||
|
||
- Use the [`@Language.factory`](/api/language#factory) decorator to register
|
||
your component and assign it a name. This allows users to refer to your
|
||
components by name and serialize pipelines referencing them. Remove all manual
|
||
entries to the `Language.factories`.
|
||
- Make sure your component factories take at least two **named arguments**:
|
||
`nlp` (the current `nlp` object) and `name` (the instance name of the added
|
||
component so you can identify multiple instances of the same component).
|
||
- Update all references to [`nlp.add_pipe`](/api/language#add_pipe) in your docs
|
||
to use **string names** instead of the component functions.
|
||
|
||
```python
|
||
### {highlight="1-5"}
|
||
from spacy.language import Language
|
||
|
||
@Language.factory("my_component", default_config={"some_setting": False})
|
||
def create_component(nlp: Language, name: str, some_setting: bool):
|
||
return MyCoolComponent(some_setting=some_setting)
|
||
|
||
|
||
class MyCoolComponent:
|
||
def __init__(self, some_setting):
|
||
self.some_setting = some_setting
|
||
|
||
def __call__(self, doc):
|
||
# Do something to the doc
|
||
return doc
|
||
```
|
||
|
||
> #### Result in config.cfg
|
||
>
|
||
> ```ini
|
||
> [components.my_component]
|
||
> factory = "my_component"
|
||
> some_setting = true
|
||
> ```
|
||
|
||
```diff
|
||
import spacy
|
||
from your_plugin import MyCoolComponent
|
||
|
||
nlp = spacy.load("en_core_web_sm")
|
||
- component = MyCoolComponent(some_setting=True)
|
||
- nlp.add_pipe(component)
|
||
+ nlp.add_pipe("my_component", config={"some_setting": True})
|
||
```
|
||
|
||
<Infobox title="Important note on registering factories" variant="warning">
|
||
|
||
The [`@Language.factory`](/api/language#factory) decorator takes care of letting
|
||
spaCy know that a component of that name is available. This means that your
|
||
users can add it to the pipeline using its **string name**. However, this
|
||
requires the decorator to be executed – so users will still have to **import
|
||
your plugin**. Alternatively, your plugin could expose an
|
||
[entry point](/usage/saving-loading#entry-points), which spaCy can read from.
|
||
This means that spaCy knows how to initialize `my_component`, even if your
|
||
package isn't imported.
|
||
|
||
</Infobox>
|