mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-26 05:31:15 +03:00 
			
		
		
		
	* Update English tag_map
Update English tag_map based on this conversion table:
https://universaldependencies.org/tagset-conversion/en-penn-uposf.html
* Update German tag_map
Update German tag_map based on this conversion table:
https://universaldependencies.org/tagset-conversion/de-stts-uposf.html
* Add missing Tiger dependencies to glossary
* Add quotes to definition of TO
* Update POS/TAG tables in docs
Update POS/TAG tables for English and German docs using current
information generated from the tag_maps and GLOSSARY.
* Update warning that -PRON- is specific to English
* Revert docs to default JSON output with convert
* Revert "Revert docs to default JSON output with convert"
This reverts commit 6b78c048f1.
		
	
			
		
			
				
	
	
		
			622 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			622 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| title: Annotation Specifications
 | ||
| teaser: Schemes used for labels, tags and training data
 | ||
| menu:
 | ||
|   - ['Text Processing', 'text-processing']
 | ||
|   - ['POS Tagging', 'pos-tagging']
 | ||
|   - ['Dependencies', 'dependency-parsing']
 | ||
|   - ['Named Entities', 'named-entities']
 | ||
|   - ['Models & Training', 'training']
 | ||
| ---
 | ||
| 
 | ||
| ## Text processing {#text-processing}
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.lang.en import English
 | ||
| > nlp = English()
 | ||
| > tokens = nlp("Some\\nspaces  and\\ttab characters")
 | ||
| > tokens_text = [t.text for t in tokens]
 | ||
| > assert tokens_text == ["Some", "\\n", "spaces", " ", "and", "\\t", "tab", "characters"]
 | ||
| > ```
 | ||
| 
 | ||
| Tokenization standards are based on the
 | ||
| [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) corpus. The tokenizer
 | ||
| differs from most by including **tokens for significant whitespace**. Any
 | ||
| sequence of whitespace characters beyond a single space (`' '`) is included as a
 | ||
| token. The whitespace tokens are useful for much the same reason punctuation is
 | ||
| – it's often an important delimiter in the text. By preserving it in the token
 | ||
| output, we are able to maintain a simple alignment between the tokens and the
 | ||
| original string, and we ensure that **no information is lost** during
 | ||
| processing.
 | ||
| 
 | ||
| ### Lemmatization {#lemmatization}
 | ||
| 
 | ||
| > #### Examples
 | ||
| >
 | ||
| > In English, this means:
 | ||
| >
 | ||
| > - **Adjectives**: happier, happiest → happy
 | ||
| > - **Adverbs**: worse, worst → badly
 | ||
| > - **Nouns**: dogs, children → dog, child
 | ||
| > - **Verbs**: writes, writing, wrote, written → write
 | ||
| 
 | ||
| As of v2.2, lemmatization data is stored in a separate package,
 | ||
| [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) that can
 | ||
| be installed if needed via `pip install spacy[lookups]`. Some languages provide
 | ||
| full lemmatization rules and exceptions, while other languages currently only
 | ||
| rely on simple lookup tables.
 | ||
| 
 | ||
| <Infobox title="About spaCy's custom pronoun lemma for English" variant="warning">
 | ||
| 
 | ||
| spaCy adds a **special case for English pronouns**: all English pronouns are
 | ||
| lemmatized to the special token `-PRON-`. Unlike verbs and common nouns,
 | ||
| there's no clear base form of a personal pronoun. Should the lemma of "me" be
 | ||
| "I", or should we normalize person as well, giving "it" — or maybe "he"?
 | ||
| spaCy's solution is to introduce a novel symbol, `-PRON-`, which is used as the
 | ||
| lemma for all personal pronouns.
 | ||
| 
 | ||
| </Infobox>
 | ||
| 
 | ||
| ### Sentence boundary detection {#sentence-boundary}
 | ||
| 
 | ||
| Sentence boundaries are calculated from the syntactic parse tree, so features
 | ||
| such as punctuation and capitalization play an important but non-decisive role
 | ||
| in determining the sentence boundaries. Usually this means that the sentence
 | ||
| boundaries will at least coincide with clause boundaries, even given poorly
 | ||
| punctuated text.
 | ||
| 
 | ||
| ## Part-of-speech tagging {#pos-tagging}
 | ||
| 
 | ||
| > #### Tip: Understanding tags
 | ||
| >
 | ||
| > You can also use `spacy.explain` to get the description for the string
 | ||
| > representation of a tag. For example, `spacy.explain("RB")` will return
 | ||
| > "adverb".
 | ||
| 
 | ||
| This section lists the fine-grained and coarse-grained part-of-speech tags
 | ||
| assigned by spaCy's [models](/models). The individual mapping is specific to the
 | ||
| training corpus and can be defined in the respective language data's
 | ||
| [`tag_map.py`](/usage/adding-languages#tag-map).
 | ||
| 
 | ||
| <Accordion title="Universal Part-of-speech Tags" id="pos-universal">
 | ||
| 
 | ||
| spaCy maps all language-specific part-of-speech tags to a small, fixed set of
 | ||
| word type tags following the
 | ||
| [Universal Dependencies scheme](http://universaldependencies.org/u/pos/). The
 | ||
| universal tags don't code for any morphological features and only cover the word
 | ||
| type. They're available as the [`Token.pos`](/api/token#attributes) and
 | ||
| [`Token.pos_`](/api/token#attributes) attributes.
 | ||
| 
 | ||
| | POS     | Description               | Examples                                      |
 | ||
| | ------- | ------------------------- | --------------------------------------------- |
 | ||
| | `ADJ`   | adjective                 | big, old, green, incomprehensible, first      |
 | ||
| | `ADP`   | adposition                | in, to, during                                |
 | ||
| | `ADV`   | adverb                    | very, tomorrow, down, where, there            |
 | ||
| | `AUX`   | auxiliary                 | is, has (done), will (do), should (do)        |
 | ||
| | `CONJ`  | conjunction               | and, or, but                                  |
 | ||
| | `CCONJ` | coordinating conjunction  | and, or, but                                  |
 | ||
| | `DET`   | determiner                | a, an, the                                    |
 | ||
| | `INTJ`  | interjection              | psst, ouch, bravo, hello                      |
 | ||
| | `NOUN`  | noun                      | girl, cat, tree, air, beauty                  |
 | ||
| | `NUM`   | numeral                   | 1, 2017, one, seventy-seven, IV, MMXIV        |
 | ||
| | `PART`  | particle                  | 's, not,                                      |
 | ||
| | `PRON`  | pronoun                   | I, you, he, she, myself, themselves, somebody |
 | ||
| | `PROPN` | proper noun               | Mary, John, London, NATO, HBO                 |
 | ||
| | `PUNCT` | punctuation               | ., (, ), ?                                    |
 | ||
| | `SCONJ` | subordinating conjunction | if, while, that                               |
 | ||
| | `SYM`   | symbol                    | \$, %, §, ©, +, −, ×, ÷, =, :), 😝            |
 | ||
| | `VERB`  | verb                      | run, runs, running, eat, ate, eating          |
 | ||
| | `X`     | other                     | sfpksdpsxmsa                                  |
 | ||
| | `SPACE` | space                     |
 | ||
| 
 | ||
| </Accordion>
 | ||
| 
 | ||
| <Accordion title="English" id="pos-en">
 | ||
| 
 | ||
| The English part-of-speech tagger uses the
 | ||
| [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) version of the Penn
 | ||
| Treebank tag set. We also map the tags to the simpler Universal Dependencies v2
 | ||
| POS tag set.
 | ||
| 
 | ||
| | Tag                                   |  POS    | Morphology                              | Description                               |
 | ||
| | ------------------------------------- | ------- | --------------------------------------- | ----------------------------------------- |
 | ||
| | `$`                                   | `SYM`   |                                          | symbol, currency                          |
 | ||
| | <InlineCode>``</InlineCode>   | `PUNCT` | `PunctType=quot PunctSide=ini`           | opening quotation mark                    |
 | ||
| | `''`                                  | `PUNCT` | `PunctType=quot PunctSide=fin`           | closing quotation mark                    |
 | ||
| | `,`                                   | `PUNCT` | `PunctType=comm`                         | punctuation mark, comma                   |
 | ||
| | `-LRB-`                               | `PUNCT` | `PunctType=brck PunctSide=ini`           | left round bracket                        |
 | ||
| | `-RRB-`                               | `PUNCT` | `PunctType=brck PunctSide=fin`           | right round bracket                       |
 | ||
| | `.`                                   | `PUNCT` | `PunctType=peri`                         | punctuation mark, sentence closer         |
 | ||
| | `:`                                   | `PUNCT` |                                          | punctuation mark, colon or ellipsis       |
 | ||
| | `ADD`                                 | `X`     |                                          | email                                     |
 | ||
| | `AFX`                                 | `ADJ`   | `Hyph=yes`                               | affix                                     |
 | ||
| | `CC`                                  | `CCONJ` | `ConjType=comp`                          | conjunction, coordinating                 |
 | ||
| | `CD`                                  | `NUM`   | `NumType=card`                           | cardinal number                           |
 | ||
| | `DT`                                  | `DET`   |                                          | determiner                                |
 | ||
| | `EX`                                  | `PRON`  | `AdvType=ex`                             | existential there                         |
 | ||
| | `FW`                                  | `X`     | `Foreign=yes`                            | foreign word                              |
 | ||
| | `GW`                                  | `X`     |                                          | additional word in multi-word expression  |
 | ||
| | `HYPH`                                | `PUNCT` | `PunctType=dash`                         | punctuation mark, hyphen                  |
 | ||
| | `IN`                                  | `ADP`   |                                          | conjunction, subordinating or preposition |
 | ||
| | `JJ`                                  | `ADJ`   | `Degree=pos`                             | adjective                                 |
 | ||
| | `JJR`                                 | `ADJ`   | `Degree=comp`                            | adjective, comparative                    |
 | ||
| | `JJS`                                 | `ADJ`   | `Degree=sup`                             | adjective, superlative                    |
 | ||
| | `LS`                                  | `X`     | `NumType=ord`                            | list item marker                          |
 | ||
| | `MD`                                  | `VERB`  | `VerbType=mod`                           | verb, modal auxiliary                     |
 | ||
| | `NFP`                                 | `PUNCT` |                                          | superfluous punctuation                   |
 | ||
| | `NIL`                                 | `X`     |                                          | missing tag                               |
 | ||
| | `NN`                                  | `NOUN`  | `Number=sing`                            | noun, singular or mass                    |
 | ||
| | `NNP`                                 | `PROPN` | `NounType=prop Number=sing`              | noun, proper singular                     |
 | ||
| | `NNPS`                                | `PROPN` | `NounType=prop Number=plur`              | noun, proper plural                       |
 | ||
| | `NNS`                                 | `NOUN`  | `Number=plur`                            | noun, plural                              |
 | ||
| | `PDT`                                 | `DET`   |                                          | predeterminer                             |
 | ||
| | `POS`                                 | `PART`  | `Poss=yes`                               | possessive ending                         |
 | ||
| | `PRP`                                 | `PRON`  | `PronType=prs`                           | pronoun, personal                         |
 | ||
| | `PRP$`                                | `DET`   | `PronType=prs Poss=yes`                  | pronoun, possessive                       |
 | ||
| | `RB`                                  | `ADV`   | `Degree=pos`                             | adverb                                    |
 | ||
| | `RBR`                                 | `ADV`   | `Degree=comp`                            | adverb, comparative                       |
 | ||
| | `RBS`                                 | `ADV`   | `Degree=sup`                             | adverb, superlative                       |
 | ||
| | `RP`                                  | `ADP`   |                                          | adverb, particle                          |
 | ||
| | `SP`                                  | `SPACE` |                                          | space                                     |
 | ||
| | `SYM`                                 | `SYM`   |                                          | symbol                                    |
 | ||
| | `TO`                                  | `PART`  | `PartType=inf VerbForm=inf`              | infinitival "to"                          |
 | ||
| | `UH`                                  | `INTJ`  |                                          | interjection                              |
 | ||
| | `VB`                                  | `VERB`  | `VerbForm=inf`                           | verb, base form                           |
 | ||
| | `VBD`                                 | `VERB`  | `VerbForm=fin Tense=past`                | verb, past tense                          |
 | ||
| | `VBG`                                 | `VERB`  | `VerbForm=part Tense=pres Aspect=prog`   | verb, gerund or present participle        |
 | ||
| | `VBN`                                 | `VERB`  | `VerbForm=part Tense=past Aspect=perf`   | verb, past participle                     |
 | ||
| | `VBP`                                 | `VERB`  | `VerbForm=fin Tense=pres`                | verb, non-3rd person singular present     |
 | ||
| | `VBZ`                                 | `VERB`  | `VerbForm=fin Tense=pres Number=sing Person=three` | verb, 3rd person singular present         |
 | ||
| | `WDT`                                 | `DET`   |                                          | wh-determiner                             |
 | ||
| | `WP`                                  | `PRON`  |                                          | wh-pronoun, personal                      |
 | ||
| | `WP$`                                 | `DET`   | `Poss=yes`                               | wh-pronoun, possessive                    |
 | ||
| | `WRB`                                 | `ADV`   |                                          | wh-adverb                                 |
 | ||
| | `XX`                                  | `X`     |                                          | unknown                                   |
 | ||
| | `_SP`                                 | `SPACE` |                                          |                                           |
 | ||
| </Accordion>
 | ||
| 
 | ||
| <Accordion title="German" id="pos-de">
 | ||
| 
 | ||
| The German part-of-speech tagger uses the
 | ||
| [TIGER Treebank](http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/TIGERCorpus/annotation/index.html)
 | ||
| annotation scheme. We also map the tags to the simpler Universal Dependencies
 | ||
| v2 POS tag set.
 | ||
| 
 | ||
| | Tag       |  POS    | Morphology                               | Description                                       |
 | ||
| | --------- | ------- | ---------------------------------------- | ------------------------------------------------- |
 | ||
| | `$(`      | `PUNCT` | `PunctType=brck`                         | other sentence-internal punctuation mark          |
 | ||
| | `$,`      | `PUNCT` | `PunctType=comm`                         | comma                                             |
 | ||
| | `$.`      | `PUNCT` | `PunctType=peri`                         | sentence-final punctuation mark                   |
 | ||
| | `ADJA`    | `ADJ`   |                                          | adjective, attributive                            |
 | ||
| | `ADJD`    | `ADJ`   |                                          | adjective, adverbial or predicative               |
 | ||
| | `ADV`     | `ADV`   |                                          | adverb                                            |
 | ||
| | `APPO`    | `ADP`   | `AdpType=post`                           | postposition                                      |
 | ||
| | `APPR`    | `ADP`   | `AdpType=prep`                           | preposition; circumposition left                  |
 | ||
| | `APPRART` | `ADP`   | `AdpType=prep PronType=art`              | preposition with article                          |
 | ||
| | `APZR`    | `ADP`   | `AdpType=circ`                           | circumposition right                              |
 | ||
| | `ART`     | `DET`   | `PronType=art`                           | definite or indefinite article                    |
 | ||
| | `CARD`    | `NUM`   | `NumType=card`                           | cardinal number                                   |
 | ||
| | `FM`      | `X`     | `Foreign=yes`                            | foreign language material                         |
 | ||
| | `ITJ`     | `INTJ`  |                                          | interjection                                      |
 | ||
| | `KOKOM`   | `CCONJ` | `ConjType=comp`                          | comparative conjunction                           |
 | ||
| | `KON`     | `CCONJ` |                                          | coordinate conjunction                            |
 | ||
| | `KOUI`    | `SCONJ` |                                          | subordinate conjunction with "zu" and infinitive  |
 | ||
| | `KOUS`    | `SCONJ` |                                          | subordinate conjunction with sentence             |
 | ||
| | `NE`      | `PROPN` |                                          | proper noun                                       |
 | ||
| | `NN`      | `NOUN`  |                                          | noun, singular or mass                            |
 | ||
| | `NNE`     | `PROPN` |                                          | proper noun                                       |
 | ||
| | `PDAT`    | `DET`   | `PronType=dem`                           | attributive demonstrative pronoun                 |
 | ||
| | `PDS`     | `PRON`  | `PronType=dem`                           | substituting demonstrative pronoun                |
 | ||
| | `PIAT`    | `DET`   | `PronType=ind|neg|tot`                   | attributive indefinite pronoun without determiner |
 | ||
| | `PIS`     | `PRON`  | `PronType=ind|neg|tot`                   | substituting indefinite pronoun                   |
 | ||
| | `PPER`    | `PRON`  | `PronType=prs`                           | non-reflexive personal pronoun                    |
 | ||
| | `PPOSAT`  | `DET`   | `Poss=yes PronType=prs`                  | attributive possessive pronoun                    |
 | ||
| | `PPOSS`   | `PRON`  | `Poss=yes PronType=prs`                  | substituting possessive pronoun                   |
 | ||
| | `PRELAT`  | `DET`   | `PronType=rel`                           | attributive relative pronoun                      |
 | ||
| | `PRELS`   | `PRON`  | `PronType=rel`                           | substituting relative pronoun                     |
 | ||
| | `PRF`     | `PRON`  | `PronType=prs Reflex=yes`                | reflexive personal pronoun                        |
 | ||
| | `PROAV`   | `ADV`   | `PronType=dem`                           | pronominal adverb                                 |
 | ||
| | `PTKA`    | `PART`  |                                          | particle with adjective or adverb                 |
 | ||
| | `PTKANT`  | `PART`  | `PartType=res`                           | answer particle                                   |
 | ||
| | `PTKNEG`  | `PART`  | `Polarity=neg`                           | negative particle                                 |
 | ||
| | `PTKVZ`   | `ADP`   | `PartType=vbp`                           | separable verbal particle                         |
 | ||
| | `PTKZU`   | `PART`  | `PartType=inf`                           | "zu" before infinitive                            |
 | ||
| | `PWAT`    | `DET`   | `PronType=int`                           | attributive interrogative pronoun                 |
 | ||
| | `PWAV`    | `ADV`   | `PronType=int`                           | adverbial interrogative or relative pronoun       |
 | ||
| | `PWS`     | `PRON`  | `PronType=int`                           | substituting interrogative pronoun                |
 | ||
| | `TRUNC`   | `X`     | `Hyph=yes`                               | word remnant                                      |
 | ||
| | `VAFIN`   | `AUX`   | `Mood=ind VerbForm=fin`                  | finite verb, auxiliary                            |
 | ||
| | `VAIMP`   | `AUX`   | `Mood=imp VerbForm=fin`                  | imperative, auxiliary                             |
 | ||
| | `VAINF`   | `AUX`   | `VerbForm=inf`                           | infinitive, auxiliary                             |
 | ||
| | `VAPP`    | `AUX`   | `Aspect=perf VerbForm=part`              | perfect participle, auxiliary                     |
 | ||
| | `VMFIN`   | `VERB`  | `Mood=ind VerbForm=fin VerbType=mod`     | finite verb, modal                                |
 | ||
| | `VMINF`   | `VERB`  | `VerbForm=inf VerbType=mod`              | infinitive, modal                                 |
 | ||
| | `VMPP`    | `VERB`  | `Aspect=perf VerbForm=part VerbType=mod` | perfect participle, modal                         |
 | ||
| | `VVFIN`   | `VERB`  | `Mood=ind VerbForm=fin`                  | finite verb, full                                 |
 | ||
| | `VVIMP`   | `VERB`  | `Mood=imp VerbForm=fin`                  | imperative, full                                  |
 | ||
| | `VVINF`   | `VERB`  | `VerbForm=inf`                           | infinitive, full                                  |
 | ||
| | `VVIZU`   | `VERB`  | `VerbForm=inf`                           | infinitive with "zu", full                        |
 | ||
| | `VVPP`    | `VERB`  | `Aspect=perf VerbForm=part`              | perfect participle, full                          |
 | ||
| | `XY`      | `X`     |                                          | non-word containing non-letter                    |
 | ||
| | `_SP`     | `SPACE` |                                          |                                                   |
 | ||
| </Accordion>
 | ||
| 
 | ||
| ---
 | ||
| 
 | ||
| <Infobox title="Annotation schemes for other models">
 | ||
| 
 | ||
| For the label schemes used by the other models, see the respective `tag_map.py`
 | ||
| in [`spacy/lang`](https://github.com/explosion/spaCy/tree/master/spacy/lang).
 | ||
| 
 | ||
| </Infobox>
 | ||
| 
 | ||
| ## Syntactic Dependency Parsing {#dependency-parsing}
 | ||
| 
 | ||
| > #### Tip: Understanding labels
 | ||
| >
 | ||
| > You can also use `spacy.explain` to get the description for the string
 | ||
| > representation of a label. For example, `spacy.explain("prt")` will return
 | ||
| > "particle".
 | ||
| 
 | ||
| This section lists the syntactic dependency labels assigned by spaCy's
 | ||
| [models](/models). The individual labels are language-specific and depend on the
 | ||
| training corpus.
 | ||
| 
 | ||
| <Accordion title="Universal Dependency Labels" id="dependency-parsing-universal">
 | ||
| 
 | ||
| The [Universal Dependencies scheme](http://universaldependencies.org/u/dep/) is
 | ||
| used in all languages trained on Universal Dependency Corpora.
 | ||
| 
 | ||
| | Label        | Description                                  |
 | ||
| | ------------ | -------------------------------------------- |
 | ||
| | `acl`        | clausal modifier of noun (adjectival clause) |
 | ||
| | `advcl`      | adverbial clause modifier                    |
 | ||
| | `advmod`     | adverbial modifier                           |
 | ||
| | `amod`       | adjectival modifier                          |
 | ||
| | `appos`      | appositional modifier                        |
 | ||
| | `aux`        | auxiliary                                    |
 | ||
| | `case`       | case marking                                 |
 | ||
| | `cc`         | coordinating conjunction                     |
 | ||
| | `ccomp`      | clausal complement                           |
 | ||
| | `clf`        | classifier                                   |
 | ||
| | `compound`   | compound                                     |
 | ||
| | `conj`       | conjunct                                     |
 | ||
| | `cop`        | copula                                       |
 | ||
| | `csubj`      | clausal subject                              |
 | ||
| | `dep`        | unspecified dependency                       |
 | ||
| | `det`        | determiner                                   |
 | ||
| | `discourse`  | discourse element                            |
 | ||
| | `dislocated` | dislocated elements                          |
 | ||
| | `expl`       | expletive                                    |
 | ||
| | `fixed`      | fixed multiword expression                   |
 | ||
| | `flat`       | flat multiword expression                    |
 | ||
| | `goeswith`   | goes with                                    |
 | ||
| | `iobj`       | indirect object                              |
 | ||
| | `list`       | list                                         |
 | ||
| | `mark`       | marker                                       |
 | ||
| | `nmod`       | nominal modifier                             |
 | ||
| | `nsubj`      | nominal subject                              |
 | ||
| | `nummod`     | numeric modifier                             |
 | ||
| | `obj`        | object                                       |
 | ||
| | `obl`        | oblique nominal                              |
 | ||
| | `orphan`     | orphan                                       |
 | ||
| | `parataxis`  | parataxis                                    |
 | ||
| | `punct`      | punctuation                                  |
 | ||
| | `reparandum` | overridden disfluency                        |
 | ||
| | `root`       | root                                         |
 | ||
| | `vocative`   | vocative                                     |
 | ||
| | `xcomp`      | open clausal complement                      |
 | ||
| 
 | ||
| </Accordion>
 | ||
| 
 | ||
| <Accordion title="English" id="dependency-parsing-english">
 | ||
| 
 | ||
| The English dependency labels use the
 | ||
| [CLEAR Style](https://github.com/clir/clearnlp-guidelines/blob/master/md/specifications/dependency_labels.md)
 | ||
| by [ClearNLP](http://www.clearnlp.com).
 | ||
| 
 | ||
| | Label       | Description                                  |
 | ||
| | ----------- | -------------------------------------------- |
 | ||
| | `acl`       | clausal modifier of noun (adjectival clause) |
 | ||
| | `acomp`     | adjectival complement                        |
 | ||
| | `advcl`     | adverbial clause modifier                    |
 | ||
| | `advmod`    | adverbial modifier                           |
 | ||
| | `agent`     | agent                                        |
 | ||
| | `amod`      | adjectival modifier                          |
 | ||
| | `appos`     | appositional modifier                        |
 | ||
| | `attr`      | attribute                                    |
 | ||
| | `aux`       | auxiliary                                    |
 | ||
| | `auxpass`   | auxiliary (passive)                          |
 | ||
| | `case`      | case marking                                 |
 | ||
| | `cc`        | coordinating conjunction                     |
 | ||
| | `ccomp`     | clausal complement                           |
 | ||
| | `compound`  | compound                                     |
 | ||
| | `conj`      | conjunct                                     |
 | ||
| | `cop`       | copula                                       |
 | ||
| | `csubj`     | clausal subject                              |
 | ||
| | `csubjpass` | clausal subject (passive)                    |
 | ||
| | `dative`    | dative                                       |
 | ||
| | `dep`       | unclassified dependent                       |
 | ||
| | `det`       | determiner                                   |
 | ||
| | `dobj`      | direct object                                |
 | ||
| | `expl`      | expletive                                    |
 | ||
| | `intj`      | interjection                                 |
 | ||
| | `mark`      | marker                                       |
 | ||
| | `meta`      | meta modifier                                |
 | ||
| | `neg`       | negation modifier                            |
 | ||
| | `nn`        | noun compound modifier                       |
 | ||
| | `nounmod`   | modifier of nominal                          |
 | ||
| | `npmod`     | noun phrase as adverbial modifier            |
 | ||
| | `nsubj`     | nominal subject                              |
 | ||
| | `nsubjpass` | nominal subject (passive)                    |
 | ||
| | `nummod`    | numeric modifier                             |
 | ||
| | `oprd`      | object predicate                             |
 | ||
| | `obj`       | object                                       |
 | ||
| | `obl`       | oblique nominal                              |
 | ||
| | `parataxis` | parataxis                                    |
 | ||
| | `pcomp`     | complement of preposition                    |
 | ||
| | `pobj`      | object of preposition                        |
 | ||
| | `poss`      | possession modifier                          |
 | ||
| | `preconj`   | pre-correlative conjunction                  |
 | ||
| | `prep`      | prepositional modifier                       |
 | ||
| | `prt`       | particle                                     |
 | ||
| | `punct`     | punctuation                                  |
 | ||
| | `quantmod`  | modifier of quantifier                       |
 | ||
| | `relcl`     | relative clause modifier                     |
 | ||
| | `root`      | root                                         |
 | ||
| | `xcomp`     | open clausal complement                      |
 | ||
| 
 | ||
| </Accordion>
 | ||
| 
 | ||
| <Accordion title="German" id="dependency-parsing-german">
 | ||
| 
 | ||
| The German dependency labels use the
 | ||
| [TIGER Treebank](http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/TIGERCorpus/annotation/index.html)
 | ||
| annotation scheme.
 | ||
| 
 | ||
| | Label   | Description                     |
 | ||
| | ------- | ------------------------------- |
 | ||
| | `ac`    | adpositional case marker        |
 | ||
| | `adc`   | adjective component             |
 | ||
| | `ag`    | genitive attribute              |
 | ||
| | `ams`   | measure argument of adjective   |
 | ||
| | `app`   | apposition                      |
 | ||
| | `avc`   | adverbial phrase component      |
 | ||
| | `cc`    | comparative complement          |
 | ||
| | `cd`    | coordinating conjunction        |
 | ||
| | `cj`    | conjunct                        |
 | ||
| | `cm`    | comparative conjunction         |
 | ||
| | `cp`    | complementizer                  |
 | ||
| | `cvc`   | collocational verb construction |
 | ||
| | `da`    | dative                          |
 | ||
| | `dm`    | discourse marker                |
 | ||
| | `ep`    | expletive es                    |
 | ||
| | `ju`    | junctor                         |
 | ||
| | `mnr`   | postnominal modifier            |
 | ||
| | `mo`    | modifier                        |
 | ||
| | `ng`    | negation                        |
 | ||
| | `nk`    | noun kernel element             |
 | ||
| | `nmc`   | numerical component             |
 | ||
| | `oa`    | accusative object               |
 | ||
| | `oa2`   | second accusative object        |
 | ||
| | `oc`    | clausal object                  |
 | ||
| | `og`    | genitive object                 |
 | ||
| | `op`    | prepositional object            |
 | ||
| | `par`   | parenthetical element           |
 | ||
| | `pd`    | predicate                       |
 | ||
| | `pg`    | phrasal genitive                |
 | ||
| | `ph`    | placeholder                     |
 | ||
| | `pm`    | morphological particle          |
 | ||
| | `pnc`   | proper noun component           |
 | ||
| | `punct` | punctuation                     |
 | ||
| | `rc`    | relative clause                 |
 | ||
| | `re`    | repeated element                |
 | ||
| | `rs`    | reported speech                 |
 | ||
| | `sb`    | subject                         |
 | ||
| | `sbp`   | passivized subject (PP)         |
 | ||
| | `sp`    | subject or predicate            |
 | ||
| | `svp`   | separable verb prefix           |
 | ||
| | `uc`    | unit component                  |
 | ||
| | `vo`    | vocative                        |
 | ||
| | `ROOT`  | root                            |
 | ||
| 
 | ||
| </Accordion>
 | ||
| 
 | ||
| ## Named Entity Recognition {#named-entities}
 | ||
| 
 | ||
| > #### Tip: Understanding entity types
 | ||
| >
 | ||
| > You can also use `spacy.explain` to get the description for the string
 | ||
| > representation of an entity label. For example, `spacy.explain("LANGUAGE")`
 | ||
| > will return "any named language".
 | ||
| 
 | ||
| Models trained on the [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19)
 | ||
| corpus support the following entity types:
 | ||
| 
 | ||
| | Type          | Description                                          |
 | ||
| | ------------- | ---------------------------------------------------- |
 | ||
| | `PERSON`      | People, including fictional.                         |
 | ||
| | `NORP`        | Nationalities or religious or political groups.      |
 | ||
| | `FAC`         | Buildings, airports, highways, bridges, etc.         |
 | ||
| | `ORG`         | Companies, agencies, institutions, etc.              |
 | ||
| | `GPE`         | Countries, cities, states.                           |
 | ||
| | `LOC`         | Non-GPE locations, mountain ranges, bodies of water. |
 | ||
| | `PRODUCT`     | Objects, vehicles, foods, etc. (Not services.)       |
 | ||
| | `EVENT`       | Named hurricanes, battles, wars, sports events, etc. |
 | ||
| | `WORK_OF_ART` | Titles of books, songs, etc.                         |
 | ||
| | `LAW`         | Named documents made into laws.                      |
 | ||
| | `LANGUAGE`    | Any named language.                                  |
 | ||
| | `DATE`        | Absolute or relative dates or periods.               |
 | ||
| | `TIME`        | Times smaller than a day.                            |
 | ||
| | `PERCENT`     | Percentage, including "%".                           |
 | ||
| | `MONEY`       | Monetary values, including unit.                     |
 | ||
| | `QUANTITY`    | Measurements, as of weight or distance.              |
 | ||
| | `ORDINAL`     | "first", "second", etc.                              |
 | ||
| | `CARDINAL`    | Numerals that do not fall under another type.        |
 | ||
| 
 | ||
| ### Wikipedia scheme {#ner-wikipedia-scheme}
 | ||
| 
 | ||
| Models trained on Wikipedia corpus
 | ||
| ([Nothman et al., 2013](http://www.sciencedirect.com/science/article/pii/S0004370212000276))
 | ||
| use a less fine-grained NER annotation scheme and recognise the following
 | ||
| entities:
 | ||
| 
 | ||
| | Type   | Description                                                                                                                               |
 | ||
| | ------ | ----------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `PER`  | Named person or family.                                                                                                                   |
 | ||
| | `LOC`  | Name of politically or geographically defined location (cities, provinces, countries, international regions, bodies of water, mountains). |
 | ||
| | `ORG`  | Named corporate, governmental, or other organizational entity.                                                                            |
 | ||
| | `MISC` | Miscellaneous entities, e.g. events, nationalities, products or works of art.                                                             |
 | ||
| 
 | ||
| ### IOB Scheme {#iob}
 | ||
| 
 | ||
| | Tag   | ID  | Description                           |
 | ||
| | ----- | --- | ------------------------------------- |
 | ||
| | `"I"` | `1` | Token is inside an entity.            |
 | ||
| | `"O"` | `2` | Token is outside an entity.           |
 | ||
| | `"B"` | `3` | Token begins an entity.               |
 | ||
| | `""`  | `0` | No entity tag is set (missing value). |
 | ||
| 
 | ||
| ### BILUO Scheme {#biluo}
 | ||
| 
 | ||
| | Tag         | Description                              |
 | ||
| | ----------- | ---------------------------------------- |
 | ||
| | **`B`**EGIN | The first token of a multi-token entity. |
 | ||
| | **`I`**N    | An inner token of a multi-token entity.  |
 | ||
| | **`L`**AST  | The final token of a multi-token entity. |
 | ||
| | **`U`**NIT  | A single-token entity.                   |
 | ||
| | **`O`**UT   | A non-entity token.                      |
 | ||
| 
 | ||
| > #### Why BILUO, not IOB?
 | ||
| >
 | ||
| > There are several coding schemes for encoding entity annotations as token
 | ||
| > tags. These coding schemes are equally expressive, but not necessarily equally
 | ||
| > learnable. [Ratinov and Roth](http://www.aclweb.org/anthology/W09-1119) showed
 | ||
| > that the minimal **Begin**, **In**, **Out** scheme was more difficult to learn
 | ||
| > than the **BILUO** scheme that we use, which explicitly marks boundary tokens.
 | ||
| 
 | ||
| spaCy translates the character offsets into this scheme, in order to decide the
 | ||
| cost of each action given the current state of the entity recognizer. The costs
 | ||
| are then used to calculate the gradient of the loss, to train the model. The
 | ||
| exact algorithm is a pastiche of well-known methods, and is not currently
 | ||
| described in any single publication. The model is a greedy transition-based
 | ||
| parser guided by a linear model whose weights are learned using the averaged
 | ||
| perceptron loss, via the
 | ||
| [dynamic oracle](http://www.aclweb.org/anthology/C12-1059) imitation learning
 | ||
| strategy. The transition system is equivalent to the BILUO tagging scheme.
 | ||
| 
 | ||
| ## Models and training data {#training}
 | ||
| 
 | ||
| ### JSON input format for training {#json-input}
 | ||
| 
 | ||
| spaCy takes training data in JSON format. The built-in
 | ||
| [`convert`](/api/cli#convert) command helps you convert the `.conllu` format
 | ||
| used by the
 | ||
| [Universal Dependencies corpora](https://github.com/UniversalDependencies) to
 | ||
| spaCy's training format. To convert one or more existing `Doc` objects to
 | ||
| spaCy's JSON format, you can use the
 | ||
| [`gold.docs_to_json`](/api/goldparse#docs_to_json) helper.
 | ||
| 
 | ||
| > #### Annotating entities
 | ||
| >
 | ||
| > Named entities are provided in the [BILUO](#biluo) notation. Tokens outside an
 | ||
| > entity are set to `"O"` and tokens that are part of an entity are set to the
 | ||
| > entity label, prefixed by the BILUO marker. For example `"B-ORG"` describes
 | ||
| > the first token of a multi-token `ORG` entity and `"U-PERSON"` a single token
 | ||
| > representing a `PERSON` entity. The
 | ||
| > [`biluo_tags_from_offsets`](/api/goldparse#biluo_tags_from_offsets) function
 | ||
| > can help you convert entity offsets to the right format.
 | ||
| 
 | ||
| ```python
 | ||
| ### Example structure
 | ||
| [{
 | ||
|     "id": int,                      # ID of the document within the corpus
 | ||
|     "paragraphs": [{                # list of paragraphs in the corpus
 | ||
|         "raw": string,              # raw text of the paragraph
 | ||
|         "sentences": [{             # list of sentences in the paragraph
 | ||
|             "tokens": [{            # list of tokens in the sentence
 | ||
|                 "id": int,          # index of the token in the document
 | ||
|                 "dep": string,      # dependency label
 | ||
|                 "head": int,        # offset of token head relative to token index
 | ||
|                 "tag": string,      # part-of-speech tag
 | ||
|                 "orth": string,     # verbatim text of the token
 | ||
|                 "ner": string       # BILUO label, e.g. "O" or "B-ORG"
 | ||
|             }],
 | ||
|             "brackets": [{          # phrase structure (NOT USED by current models)
 | ||
|                 "first": int,       # index of first token
 | ||
|                 "last": int,        # index of last token
 | ||
|                 "label": string     # phrase label
 | ||
|             }]
 | ||
|         }],
 | ||
|         "cats": [{                  # new in v2.2: categories for text classifier
 | ||
|             "label": string,        # text category label
 | ||
|             "value": float / bool   # label applies (1.0/true) or not (0.0/false)
 | ||
|         }]
 | ||
|     }]
 | ||
| }]
 | ||
| ```
 | ||
| 
 | ||
| Here's an example of dependencies, part-of-speech tags and names entities, taken
 | ||
| from the English Wall Street Journal portion of the Penn Treebank:
 | ||
| 
 | ||
| ```json
 | ||
| https://github.com/explosion/spaCy/tree/master/examples/training/training-data.json
 | ||
| ```
 | ||
| 
 | ||
| ### Lexical data for vocabulary {#vocab-jsonl new="2"}
 | ||
| 
 | ||
| To populate a model's vocabulary, you can use the
 | ||
| [`spacy init-model`](/api/cli#init-model) command and load in a
 | ||
| [newline-delimited JSON](http://jsonlines.org/) (JSONL) file containing one
 | ||
| lexical entry per line via the `--jsonl-loc` option. The first line defines the
 | ||
| language and vocabulary settings. All other lines are expected to be JSON
 | ||
| objects describing an individual lexeme. The lexical attributes will be then set
 | ||
| as attributes on spaCy's [`Lexeme`](/api/lexeme#attributes) object. The `vocab`
 | ||
| command outputs a ready-to-use spaCy model with a `Vocab` containing the lexical
 | ||
| data.
 | ||
| 
 | ||
| ```python
 | ||
| ### First line
 | ||
| {"lang": "en", "settings": {"oov_prob": -20.502029418945312}}
 | ||
| ```
 | ||
| 
 | ||
| ```python
 | ||
| ### Entry structure
 | ||
| {
 | ||
|     "orth": string,     # the word text
 | ||
|     "id": int,          # can correspond to row in vectors table
 | ||
|     "lower": string,
 | ||
|     "norm": string,
 | ||
|     "shape": string
 | ||
|     "prefix": string,
 | ||
|     "suffix": string,
 | ||
|     "length": int,
 | ||
|     "cluster": string,
 | ||
|     "prob": float,
 | ||
|     "is_alpha": bool,
 | ||
|     "is_ascii": bool,
 | ||
|     "is_digit": bool,
 | ||
|     "is_lower": bool,
 | ||
|     "is_punct": bool,
 | ||
|     "is_space": bool,
 | ||
|     "is_title": bool,
 | ||
|     "is_upper": bool,
 | ||
|     "like_url": bool,
 | ||
|     "like_num": bool,
 | ||
|     "like_email": bool,
 | ||
|     "is_stop": bool,
 | ||
|     "is_oov": bool,
 | ||
|     "is_quote": bool,
 | ||
|     "is_left_punct": bool,
 | ||
|     "is_right_punct": bool
 | ||
| }
 | ||
| ```
 | ||
| 
 | ||
| Here's an example of the 20 most frequent lexemes in the English training data:
 | ||
| 
 | ||
| ```json
 | ||
| https://github.com/explosion/spaCy/tree/master/examples/training/vocab-data.jsonl
 | ||
| ```
 |