mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			319 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			319 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						||
title: Vocab
 | 
						||
teaser: A storage class for vocabulary and other data shared across a language
 | 
						||
tag: class
 | 
						||
source: spacy/vocab.pyx
 | 
						||
---
 | 
						||
 | 
						||
The `Vocab` object provides a lookup table that allows you to access
 | 
						||
[`Lexeme`](/api/lexeme) objects, as well as the
 | 
						||
[`StringStore`](/api/stringstore). It also owns underlying C-data that is shared
 | 
						||
between `Doc` objects.
 | 
						||
 | 
						||
## Vocab.\_\_init\_\_ {#init tag="method"}
 | 
						||
 | 
						||
Create the vocabulary.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> from spacy.vocab import Vocab
 | 
						||
> vocab = Vocab(strings=["hello", "world"])
 | 
						||
> ```
 | 
						||
 | 
						||
| Name                                        | Type                 | Description                                                                                                        |
 | 
						||
| ------------------------------------------- | -------------------- | ------------------------------------------------------------------------------------------------------------------ |
 | 
						||
| `lex_attr_getters`                          | dict                 | A dictionary mapping attribute IDs to functions to compute them. Defaults to `None`.                               |
 | 
						||
| `tag_map`                                   | dict                 | A dictionary mapping fine-grained tags to coarse-grained parts-of-speech, and optionally morphological attributes. |
 | 
						||
| `lemmatizer`                                | object               | A lemmatizer. Defaults to `None`.                                                                                  |
 | 
						||
| `strings`                                   | `StringStore` / list | A [`StringStore`](/api/stringstore) that maps strings to hash values, and vice versa, or a list of strings.        |
 | 
						||
| `vectors_name` <Tag variant="new">2.2</Tag> | unicode              | A name to identify the vectors table.                                                                              |
 | 
						||
| **RETURNS**                                 | `Vocab`              | The newly constructed object.                                                                                      |
 | 
						||
 | 
						||
## Vocab.\_\_len\_\_ {#len tag="method"}
 | 
						||
 | 
						||
Get the current number of lexemes in the vocabulary.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> doc = nlp("This is a sentence.")
 | 
						||
> assert len(nlp.vocab) > 0
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Type | Description                              |
 | 
						||
| ----------- | ---- | ---------------------------------------- |
 | 
						||
| **RETURNS** | int  | The number of lexemes in the vocabulary. |
 | 
						||
 | 
						||
## Vocab.\_\_getitem\_\_ {#getitem tag="method"}
 | 
						||
 | 
						||
Retrieve a lexeme, given an int ID or a unicode string. If a previously unseen
 | 
						||
unicode string is given, a new lexeme is created and stored.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> apple = nlp.vocab.strings["apple"]
 | 
						||
> assert nlp.vocab[apple] == nlp.vocab["apple"]
 | 
						||
> ```
 | 
						||
 | 
						||
| Name           | Type          | Description                                      |
 | 
						||
| -------------- | ------------- | ------------------------------------------------ |
 | 
						||
| `id_or_string` | int / unicode | The hash value of a word, or its unicode string. |
 | 
						||
| **RETURNS**    | `Lexeme`      | The lexeme indicated by the given ID.            |
 | 
						||
 | 
						||
## Vocab.\_\_iter\_\_ {#iter tag="method"}
 | 
						||
 | 
						||
Iterate over the lexemes in the vocabulary.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> stop_words = (lex for lex in nlp.vocab if lex.is_stop)
 | 
						||
> ```
 | 
						||
 | 
						||
| Name       | Type     | Description                 |
 | 
						||
| ---------- | -------- | --------------------------- |
 | 
						||
| **YIELDS** | `Lexeme` | An entry in the vocabulary. |
 | 
						||
 | 
						||
## Vocab.\_\_contains\_\_ {#contains tag="method"}
 | 
						||
 | 
						||
Check whether the string has an entry in the vocabulary. To get the ID for a
 | 
						||
given string, you need to look it up in
 | 
						||
[`vocab.strings`](/api/vocab#attributes).
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> apple = nlp.vocab.strings["apple"]
 | 
						||
> oov = nlp.vocab.strings["dskfodkfos"]
 | 
						||
> assert apple in nlp.vocab
 | 
						||
> assert oov not in nlp.vocab
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Type    | Description                                        |
 | 
						||
| ----------- | ------- | -------------------------------------------------- |
 | 
						||
| `string`    | unicode | The ID string.                                     |
 | 
						||
| **RETURNS** | bool    | Whether the string has an entry in the vocabulary. |
 | 
						||
 | 
						||
## Vocab.add_flag {#add_flag tag="method"}
 | 
						||
 | 
						||
Set a new boolean flag to words in the vocabulary. The `flag_getter` function
 | 
						||
will be called over the words currently in the vocab, and then applied to new
 | 
						||
words as they occur. You'll then be able to access the flag value on each token,
 | 
						||
using `token.check_flag(flag_id)`.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> def is_my_product(text):
 | 
						||
>     products = ["spaCy", "Thinc", "displaCy"]
 | 
						||
>     return text in products
 | 
						||
>
 | 
						||
> MY_PRODUCT = nlp.vocab.add_flag(is_my_product)
 | 
						||
> doc = nlp("I like spaCy")
 | 
						||
> assert doc[2].check_flag(MY_PRODUCT) == True
 | 
						||
> ```
 | 
						||
 | 
						||
| Name          | Type | Description                                                                                                                                     |
 | 
						||
| ------------- | ---- | ----------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						||
| `flag_getter` | dict | A function `f(unicode) -> bool`, to get the flag value.                                                                                         |
 | 
						||
| `flag_id`     | int  | An integer between 1 and 63 (inclusive), specifying the bit at which the flag will be stored. If `-1`, the lowest available bit will be chosen. |
 | 
						||
| **RETURNS**   | int  | The integer ID by which the flag value can be checked.                                                                                          |
 | 
						||
 | 
						||
## Vocab.reset_vectors {#reset_vectors tag="method" new="2"}
 | 
						||
 | 
						||
Drop the current vector table. Because all vectors must be the same width, you
 | 
						||
have to call this to change the size of the vectors. Only one of the `width` and
 | 
						||
`shape` keyword arguments can be specified.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> nlp.vocab.reset_vectors(width=300)
 | 
						||
> ```
 | 
						||
 | 
						||
| Name    | Type | Description                            |
 | 
						||
| ------- | ---- | -------------------------------------- |
 | 
						||
| `width` | int  | The new width (keyword argument only). |
 | 
						||
| `shape` | int  | The new shape (keyword argument only). |
 | 
						||
 | 
						||
## Vocab.prune_vectors {#prune_vectors tag="method" new="2"}
 | 
						||
 | 
						||
Reduce the current vector table to `nr_row` unique entries. Words mapped to the
 | 
						||
discarded vectors will be remapped to the closest vector among those remaining.
 | 
						||
For example, suppose the original table had vectors for the words:
 | 
						||
`['sat', 'cat', 'feline', 'reclined']`. If we prune the vector table to, two
 | 
						||
rows, we would discard the vectors for "feline" and "reclined". These words
 | 
						||
would then be remapped to the closest remaining vector – so "feline" would have
 | 
						||
the same vector as "cat", and "reclined" would have the same vector as "sat".
 | 
						||
The similarities are judged by cosine. The original vectors may be large, so the
 | 
						||
cosines are calculated in minibatches, to reduce memory usage.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> nlp.vocab.prune_vectors(10000)
 | 
						||
> assert len(nlp.vocab.vectors) <= 1000
 | 
						||
> ```
 | 
						||
 | 
						||
| Name         | Type | Description                                                                                                                                                                                 |
 | 
						||
| ------------ | ---- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						||
| `nr_row`     | int  | The number of rows to keep in the vector table.                                                                                                                                             |
 | 
						||
| `batch_size` | int  | Batch of vectors for calculating the similarities. Larger batch sizes might be faster, while temporarily requiring more memory.                                                             |
 | 
						||
| **RETURNS**  | dict | A dictionary keyed by removed words mapped to `(string, score)` tuples, where `string` is the entry the removed word was mapped to, and `score` the similarity score between the two words. |
 | 
						||
 | 
						||
## Vocab.get_vector {#get_vector tag="method" new="2"}
 | 
						||
 | 
						||
Retrieve a vector for a word in the vocabulary. Words can be looked up by string
 | 
						||
or hash value. If no vectors data is loaded, a `ValueError` is raised.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> nlp.vocab.get_vector("apple")
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Type                                     | Description                                                                   |
 | 
						||
| ----------- | ---------------------------------------- | ----------------------------------------------------------------------------- |
 | 
						||
| `orth`      | int / unicode                            | The hash value of a word, or its unicode string.                              |
 | 
						||
| **RETURNS** | `numpy.ndarray[ndim=1, dtype='float32']` | A word vector. Size and shape are determined by the `Vocab.vectors` instance. |
 | 
						||
 | 
						||
## Vocab.set_vector {#set_vector tag="method" new="2"}
 | 
						||
 | 
						||
Set a vector for a word in the vocabulary. Words can be referenced by by string
 | 
						||
or hash value.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> nlp.vocab.set_vector("apple", array([...]))
 | 
						||
> ```
 | 
						||
 | 
						||
| Name     | Type                                     | Description                                      |
 | 
						||
| -------- | ---------------------------------------- | ------------------------------------------------ |
 | 
						||
| `orth`   | int / unicode                            | The hash value of a word, or its unicode string. |
 | 
						||
| `vector` | `numpy.ndarray[ndim=1, dtype='float32']` | The vector to set.                               |
 | 
						||
 | 
						||
## Vocab.has_vector {#has_vector tag="method" new="2"}
 | 
						||
 | 
						||
Check whether a word has a vector. Returns `False` if no vectors are loaded.
 | 
						||
Words can be looked up by string or hash value.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> if nlp.vocab.has_vector("apple"):
 | 
						||
>     vector = nlp.vocab.get_vector("apple")
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Type          | Description                                      |
 | 
						||
| ----------- | ------------- | ------------------------------------------------ |
 | 
						||
| `orth`      | int / unicode | The hash value of a word, or its unicode string. |
 | 
						||
| **RETURNS** | bool          | Whether the word has a vector.                   |
 | 
						||
 | 
						||
## Vocab.to_disk {#to_disk tag="method" new="2"}
 | 
						||
 | 
						||
Save the current state to a directory.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> nlp.vocab.to_disk("/path/to/vocab")
 | 
						||
> ```
 | 
						||
 | 
						||
| Name      | Type             | Description                                                                                                           |
 | 
						||
| --------- | ---------------- | --------------------------------------------------------------------------------------------------------------------- |
 | 
						||
| `path`    | unicode / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
 | 
						||
| `exclude` | list             | String names of [serialization fields](#serialization-fields) to exclude.                                             |
 | 
						||
 | 
						||
## Vocab.from_disk {#from_disk tag="method" new="2"}
 | 
						||
 | 
						||
Loads state from a directory. Modifies the object in place and returns it.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> from spacy.vocab import Vocab
 | 
						||
> vocab = Vocab().from_disk("/path/to/vocab")
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Type             | Description                                                                |
 | 
						||
| ----------- | ---------------- | -------------------------------------------------------------------------- |
 | 
						||
| `path`      | unicode / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
 | 
						||
| `exclude`   | list             | String names of [serialization fields](#serialization-fields) to exclude.  |
 | 
						||
| **RETURNS** | `Vocab`          | The modified `Vocab` object.                                               |
 | 
						||
 | 
						||
## Vocab.to_bytes {#to_bytes tag="method"}
 | 
						||
 | 
						||
Serialize the current state to a binary string.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> vocab_bytes = nlp.vocab.to_bytes()
 | 
						||
> ```
 | 
						||
 | 
						||
| Name        | Type  | Description                                                               |
 | 
						||
| ----------- | ----- | ------------------------------------------------------------------------- |
 | 
						||
| `exclude`   | list  | String names of [serialization fields](#serialization-fields) to exclude. |
 | 
						||
| **RETURNS** | bytes | The serialized form of the `Vocab` object.                                |
 | 
						||
 | 
						||
## Vocab.from_bytes {#from_bytes tag="method"}
 | 
						||
 | 
						||
Load state from a binary string.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> from spacy.vocab import Vocab
 | 
						||
> vocab_bytes = nlp.vocab.to_bytes()
 | 
						||
> vocab = Vocab()
 | 
						||
> vocab.from_bytes(vocab_bytes)
 | 
						||
> ```
 | 
						||
 | 
						||
| Name         | Type    | Description                                                               |
 | 
						||
| ------------ | ------- | ------------------------------------------------------------------------- |
 | 
						||
| `bytes_data` | bytes   | The data to load from.                                                    |
 | 
						||
| `exclude`    | list    | String names of [serialization fields](#serialization-fields) to exclude. |
 | 
						||
| **RETURNS**  | `Vocab` | The `Vocab` object.                                                       |
 | 
						||
 | 
						||
## Attributes {#attributes}
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> apple_id = nlp.vocab.strings["apple"]
 | 
						||
> assert type(apple_id) == int
 | 
						||
> PERSON = nlp.vocab.strings["PERSON"]
 | 
						||
> assert type(PERSON) == int
 | 
						||
> ```
 | 
						||
 | 
						||
| Name                                          | Type          | Description                                                  |
 | 
						||
| --------------------------------------------- | ------------- | ------------------------------------------------------------ |
 | 
						||
| `strings`                                     | `StringStore` | A table managing the string-to-int mapping.                  |
 | 
						||
| `vectors` <Tag variant="new">2</Tag>          | `Vectors`     | A table associating word IDs to word vectors.                |
 | 
						||
| `vectors_length`                              | int           | Number of dimensions for each word vector.                   |
 | 
						||
| `lookups`                                     | `Lookups`     | The available lookup tables in this vocab.                   |
 | 
						||
| `writing_system` <Tag variant="new">2.1</Tag> | dict          | A dict with information about the language's writing system. |
 | 
						||
 | 
						||
## Serialization fields {#serialization-fields}
 | 
						||
 | 
						||
During serialization, spaCy will export several data fields used to restore
 | 
						||
different aspects of the object. If needed, you can exclude them from
 | 
						||
serialization by passing in the string names via the `exclude` argument.
 | 
						||
 | 
						||
> #### Example
 | 
						||
>
 | 
						||
> ```python
 | 
						||
> data = vocab.to_bytes(exclude=["strings", "vectors"])
 | 
						||
> vocab.from_disk("./vocab", exclude=["strings"])
 | 
						||
> ```
 | 
						||
 | 
						||
| Name      | Description                                           |
 | 
						||
| --------- | ----------------------------------------------------- |
 | 
						||
| `strings` | The strings in the [`StringStore`](/api/stringstore). |
 | 
						||
| `lexemes` | The lexeme data.                                      |
 | 
						||
| `vectors` | The word vectors, if available.                       |
 | 
						||
| `lookups` | The lookup tables, if available.                      |
 |