mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			235 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			235 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import warnings
 | 
						|
from typing import Dict, Any, Optional, Iterable
 | 
						|
from pathlib import Path
 | 
						|
 | 
						|
from spacy.training import Example
 | 
						|
from spacy.util import dot_to_object
 | 
						|
from wasabi import msg
 | 
						|
from thinc.api import require_gpu, fix_random_seed, set_dropout_rate, Adam
 | 
						|
from thinc.api import Model, data_validation, set_gpu_allocator
 | 
						|
import typer
 | 
						|
 | 
						|
from ._util import Arg, Opt, debug_cli, show_validation_error
 | 
						|
from ._util import parse_config_overrides, string_to_list
 | 
						|
from .. import util
 | 
						|
 | 
						|
 | 
						|
@debug_cli.command("model")
 | 
						|
def debug_model_cli(
 | 
						|
    # fmt: off
 | 
						|
    ctx: typer.Context,  # This is only used to read additional arguments
 | 
						|
    config_path: Path = Arg(..., help="Path to config file", exists=True),
 | 
						|
    component: str = Arg(..., help="Name of the pipeline component of which the model should be analysed"),
 | 
						|
    layers: str = Opt("", "--layers", "-l", help="Comma-separated names of layer IDs to print"),
 | 
						|
    dimensions: bool = Opt(False, "--dimensions", "-DIM", help="Show dimensions"),
 | 
						|
    parameters: bool = Opt(False, "--parameters", "-PAR", help="Show parameters"),
 | 
						|
    gradients: bool = Opt(False, "--gradients", "-GRAD", help="Show gradients"),
 | 
						|
    attributes: bool = Opt(False, "--attributes", "-ATTR", help="Show attributes"),
 | 
						|
    P0: bool = Opt(False, "--print-step0", "-P0", help="Print model before training"),
 | 
						|
    P1: bool = Opt(False, "--print-step1", "-P1", help="Print model after initialization"),
 | 
						|
    P2: bool = Opt(False, "--print-step2", "-P2", help="Print model after training"),
 | 
						|
    P3: bool = Opt(False, "--print-step3", "-P3", help="Print final predictions"),
 | 
						|
    use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
 | 
						|
    # fmt: on
 | 
						|
):
 | 
						|
    """
 | 
						|
    Analyze a Thinc model implementation. Includes checks for internal structure
 | 
						|
    and activations during training.
 | 
						|
 | 
						|
    DOCS: https://nightly.spacy.io/api/cli#debug-model
 | 
						|
    """
 | 
						|
    if use_gpu >= 0:
 | 
						|
        msg.info("Using GPU")
 | 
						|
        require_gpu(use_gpu)
 | 
						|
    else:
 | 
						|
        msg.info("Using CPU")
 | 
						|
    layers = string_to_list(layers, intify=True)
 | 
						|
    print_settings = {
 | 
						|
        "dimensions": dimensions,
 | 
						|
        "parameters": parameters,
 | 
						|
        "gradients": gradients,
 | 
						|
        "attributes": attributes,
 | 
						|
        "layers": layers,
 | 
						|
        "print_before_training": P0,
 | 
						|
        "print_after_init": P1,
 | 
						|
        "print_after_training": P2,
 | 
						|
        "print_prediction": P3,
 | 
						|
    }
 | 
						|
    config_overrides = parse_config_overrides(ctx.args)
 | 
						|
    with show_validation_error(config_path):
 | 
						|
        config = util.load_config(
 | 
						|
            config_path, overrides=config_overrides, interpolate=True
 | 
						|
        )
 | 
						|
        allocator = config["training"]["gpu_allocator"]
 | 
						|
        if use_gpu >= 0 and allocator:
 | 
						|
            set_gpu_allocator(allocator)
 | 
						|
        nlp, config = util.load_model_from_config(config)
 | 
						|
    seed = config["training"]["seed"]
 | 
						|
    if seed is not None:
 | 
						|
        msg.info(f"Fixing random seed: {seed}")
 | 
						|
        fix_random_seed(seed)
 | 
						|
    pipe = nlp.get_pipe(component)
 | 
						|
    if not hasattr(pipe, "model"):
 | 
						|
        msg.fail(
 | 
						|
            f"The component '{component}' does not specify an object that holds a Model.",
 | 
						|
            exits=1,
 | 
						|
        )
 | 
						|
    model = pipe.model
 | 
						|
    debug_model(config, nlp, model, print_settings=print_settings)
 | 
						|
 | 
						|
 | 
						|
def debug_model(
 | 
						|
    config, nlp, model: Model, *, print_settings: Optional[Dict[str, Any]] = None
 | 
						|
):
 | 
						|
    if not isinstance(model, Model):
 | 
						|
        msg.fail(
 | 
						|
            f"Requires a Thinc Model to be analysed, but found {type(model)} instead.",
 | 
						|
            exits=1,
 | 
						|
        )
 | 
						|
    if print_settings is None:
 | 
						|
        print_settings = {}
 | 
						|
 | 
						|
    # STEP 0: Printing before training
 | 
						|
    msg.info(f"Analysing model with ID {model.id}")
 | 
						|
    if print_settings.get("print_before_training"):
 | 
						|
        msg.divider(f"STEP 0 - before training")
 | 
						|
        _print_model(model, print_settings)
 | 
						|
 | 
						|
    # STEP 1: Initializing the model and printing again
 | 
						|
    X = _get_docs()
 | 
						|
    # The output vector might differ from the official type of the output layer
 | 
						|
    with data_validation(False):
 | 
						|
        try:
 | 
						|
            train_corpus = dot_to_object(config, config["training"]["train_corpus"])
 | 
						|
            nlp.begin_training(lambda: train_corpus(nlp))
 | 
						|
            msg.info("Initialized the model with the training corpus.")
 | 
						|
        except ValueError:
 | 
						|
            try:
 | 
						|
                _set_output_dim(nO=7, model=model)
 | 
						|
                nlp.begin_training(lambda: [Example.from_dict(x, {}) for x in X])
 | 
						|
                msg.info("Initialized the model with dummy data.")
 | 
						|
            except:
 | 
						|
                msg.fail(
 | 
						|
                    "Could not initialize the model: you'll have to provide a valid train_corpus argument in the config file.",
 | 
						|
                    exits=1,
 | 
						|
                )
 | 
						|
 | 
						|
    if print_settings.get("print_after_init"):
 | 
						|
        msg.divider(f"STEP 1 - after initialization")
 | 
						|
        _print_model(model, print_settings)
 | 
						|
 | 
						|
    # STEP 2: Updating the model and printing again
 | 
						|
    optimizer = Adam(0.001)
 | 
						|
    set_dropout_rate(model, 0.2)
 | 
						|
    # ugly hack to deal with Tok2Vec listeners
 | 
						|
    tok2vec = None
 | 
						|
    if model.has_ref("tok2vec") and model.get_ref("tok2vec").name == "tok2vec-listener":
 | 
						|
        tok2vec = nlp.get_pipe("tok2vec")
 | 
						|
    goldY = None
 | 
						|
    for e in range(3):
 | 
						|
        if tok2vec:
 | 
						|
            tok2vec.predict(X)
 | 
						|
        Y, get_dX = model.begin_update(X)
 | 
						|
        if goldY is None:
 | 
						|
            goldY = _simulate_gold(Y)
 | 
						|
        dY = get_gradient(goldY, Y, model.ops)
 | 
						|
        get_dX(dY)
 | 
						|
        model.finish_update(optimizer)
 | 
						|
    if print_settings.get("print_after_training"):
 | 
						|
        msg.divider(f"STEP 2 - after training")
 | 
						|
        _print_model(model, print_settings)
 | 
						|
 | 
						|
    # STEP 3: the final prediction
 | 
						|
    prediction = model.predict(X)
 | 
						|
    if print_settings.get("print_prediction"):
 | 
						|
        msg.divider(f"STEP 3 - prediction")
 | 
						|
        msg.info(str(prediction))
 | 
						|
 | 
						|
    msg.good(f"Succesfully ended analysis - model looks good.")
 | 
						|
 | 
						|
 | 
						|
def get_gradient(goldY, Y, ops):
 | 
						|
    return ops.asarray(Y) - ops.asarray(goldY)
 | 
						|
 | 
						|
 | 
						|
def _simulate_gold(element, counter=1):
 | 
						|
    if isinstance(element, Iterable):
 | 
						|
        for i in range(len(element)):
 | 
						|
            element[i] = _simulate_gold(element[i], counter + i)
 | 
						|
        return element
 | 
						|
    else:
 | 
						|
        return 1 / counter
 | 
						|
 | 
						|
 | 
						|
def _sentences():
 | 
						|
    return [
 | 
						|
        "Apple is looking at buying U.K. startup for $1 billion",
 | 
						|
        "Autonomous cars shift insurance liability toward manufacturers",
 | 
						|
        "San Francisco considers banning sidewalk delivery robots",
 | 
						|
        "London is a big city in the United Kingdom.",
 | 
						|
    ]
 | 
						|
 | 
						|
 | 
						|
def _get_docs(lang: str = "en"):
 | 
						|
    nlp = util.get_lang_class(lang)()
 | 
						|
    return list(nlp.pipe(_sentences()))
 | 
						|
 | 
						|
 | 
						|
def _set_output_dim(model, nO):
 | 
						|
    # simulating dim inference by directly setting the nO argument of the model
 | 
						|
    if model.has_dim("nO") is None:
 | 
						|
        model.set_dim("nO", nO)
 | 
						|
    if model.has_ref("output_layer"):
 | 
						|
        if model.get_ref("output_layer").has_dim("nO") is None:
 | 
						|
            model.get_ref("output_layer").set_dim("nO", nO)
 | 
						|
 | 
						|
 | 
						|
def _print_model(model, print_settings):
 | 
						|
    layers = print_settings.get("layers", "")
 | 
						|
    parameters = print_settings.get("parameters", False)
 | 
						|
    dimensions = print_settings.get("dimensions", False)
 | 
						|
    gradients = print_settings.get("gradients", False)
 | 
						|
    attributes = print_settings.get("attributes", False)
 | 
						|
 | 
						|
    for i, node in enumerate(model.walk()):
 | 
						|
        if not layers or i in layers:
 | 
						|
            msg.info(f"Layer {i}: model ID {node.id}: '{node.name}'")
 | 
						|
 | 
						|
            if dimensions:
 | 
						|
                for name in node.dim_names:
 | 
						|
                    if node.has_dim(name):
 | 
						|
                        msg.info(f" - dim {name}: {node.get_dim(name)}")
 | 
						|
                    else:
 | 
						|
                        msg.info(f" - dim {name}: {node.has_dim(name)}")
 | 
						|
 | 
						|
            if parameters:
 | 
						|
                for name in node.param_names:
 | 
						|
                    if node.has_param(name):
 | 
						|
                        print_value = _print_matrix(node.get_param(name))
 | 
						|
                        msg.info(f" - param {name}: {print_value}")
 | 
						|
                    else:
 | 
						|
                        msg.info(f" - param {name}: {node.has_param(name)}")
 | 
						|
            if gradients:
 | 
						|
                for name in node.param_names:
 | 
						|
                    if node.has_grad(name):
 | 
						|
                        print_value = _print_matrix(node.get_grad(name))
 | 
						|
                        msg.info(f" - grad {name}: {print_value}")
 | 
						|
                    else:
 | 
						|
                        msg.info(f" - grad {name}: {node.has_grad(name)}")
 | 
						|
            if attributes:
 | 
						|
                attrs = node.attrs
 | 
						|
                for name, value in attrs.items():
 | 
						|
                    msg.info(f" - attr {name}: {value}")
 | 
						|
 | 
						|
 | 
						|
def _print_matrix(value):
 | 
						|
    if value is None or isinstance(value, bool):
 | 
						|
        return value
 | 
						|
    result = str(value.shape) + " - sample: "
 | 
						|
    sample_matrix = value
 | 
						|
    for d in range(value.ndim - 1):
 | 
						|
        sample_matrix = sample_matrix[0]
 | 
						|
    sample_matrix = sample_matrix[0:5]
 | 
						|
    result = result + str(sample_matrix)
 | 
						|
    return result
 |