spaCy/website/docs/api/attributeruler.md
2020-08-07 14:43:47 +02:00

13 KiB

title tag source new teaser api_string_name api_trainable
AttributeRuler class spacy/pipeline/attributeruler.py 3 Pipeline component for rule-based token attribute assignment attribute_ruler false

The attribute ruler lets you set token attributes for tokens identified by Matcher patterns. The attribute ruler is typically used to handle exceptions for token attributes and to map values between attributes such as mapping fine-grained POS tags to coarse-grained POS tags.

Config and implementation

The default config is defined by the pipeline component factory and describes how the component should be configured. You can override its settings via the config argument on nlp.add_pipe or in your config.cfg for training.

Example

config = {
   "pattern_dicts": None,
   "validate": True,
}
nlp.add_pipe("attribute_ruler", config=config)
Setting Type Description Default
pattern_dicts Iterable[dict] A list of pattern dicts with the keys as the arguments to AttributeRuler.add (patterns/attrs/index) to add as patterns. None
validate bool Whether patterns should be validated (passed to the Matcher). False
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/attributeruler.py

AttributeRuler.__init__

Initialize the attribute ruler. If pattern dicts are supplied here, they need to be a list of dictionaries with "patterns", "attrs", and optional "index" keys, e.g.:

pattern_dicts = \[
    {"patterns": \[\[{"TAG": "VB"}\]\], "attrs": {"POS": "VERB"}},
    {"patterns": \[\[{"LOWER": "an"}\]\], "attrs": {"LEMMA": "a"}},
\]

Example

# Construction via add_pipe
attribute_ruler = nlp.add_pipe("attribute_ruler")
Name Type Description
vocab Vocab The shared nlp object to pass the vocab to the matchers and process phrase patterns.
name str Instance name of the current pipeline component. Typically passed in automatically from the factory when the component is added. Used to disable the current entity ruler while creating phrase patterns with the nlp object.
keyword-only
pattern_dicts Iterable[Dict]] Optional patterns to load in on initialization.
validate bool Whether patterns should be validated, passed to Matcher and PhraseMatcher as validate. Defaults to False.

AttributeRuler.__call__

Apply the attribute ruler to a Doc, setting token attributes for tokens matched by the provided patterns.

Name Type Description
doc Doc The Doc object to process, e.g. the Doc in the pipeline.
RETURNS Doc The modified Doc with added entities, if available.

AttributeRuler.add

Add patterns to the attribute ruler. The patterns are a list of Matcher patterns and the attributes are a dict of attributes to set on the matched token. If the pattern matches a span of more than one token, the index can be used to set the attributes for the token at that index in the span. The index may be negative to index from the end of the span.

Example

attribute_ruler = nlp.add_pipe("attribute_ruler")
patterns = [[{"TAG": "VB"}]]
attrs = {"POS": "VERB"}
attribute_ruler.add(patterns=patterns, attrs=attrs)
Name Type Description
patterns Iterable[List[Dict]] A list of Matcher patterns.
attrs dict The attributes to assign to the target token in the matched span.
index int The index of the token in the matched span to modify. May be negative to index from the end of the span. Defaults to 0.

AttributeRuler.add_patterns

Example

attribute_ruler = nlp.add_pipe("attribute_ruler")
pattern_dicts = \[
  {
    "patterns": \[\[{"TAG": "VB"}\]\],
    "attrs": {"POS": "VERB"}
  },
  {
    "patterns": \[\[{"LOWER": "two"}, {"LOWER": "apples"}\]\],
    "attrs": {"LEMMA": "apple"},
    "index": -1
  },
\]
attribute_ruler.add_patterns(pattern_dicts)

Add patterns from a list of pattern dicts with the keys as the arguments to AttributeRuler.add.

Name Type Description
pattern_dicts Iterable[Dict]] The patterns to add.

AttributeRuler.patterns

Get all patterns that have been added to the attribute ruler in the patterns_dict format accepted by AttributeRuler.add_patterns.

Name Type Description
RETURNS List[dict] The patterns added to the attribute ruler.

AttributeRuler.load_from_tag_map

Load attribute ruler patterns from a tag map.

Name Type Description
tag_map dict The tag map that maps fine-grained tags to coarse-grained tags and morphological features.

AttributeRuler.load_from_morph_rules

Load attribute ruler patterns from morph rules.

Name Type Description
morph_rules dict The morph rules that map token text and fine-grained tags to coarse-grained tags, lemmas and morphological features.

AttributeRuler.to_disk

Serialize the pipe to disk.

Example

attribute_ruler = nlp.add_pipe("attribute_ruler")
attribute_ruler.to_disk("/path/to/attribute_ruler")
Name Type Description
path str / Path A path to a directory, which will be created if it doesn't exist. Paths may be either strings or Path-like objects.
keyword-only
exclude Iterable[str] String names of serialization fields to exclude.

AttributeRuler.from_disk

Load the pipe from disk. Modifies the object in place and returns it.

Example

attribute_ruler = nlp.add_pipe("attribute_ruler")
attribute_ruler.from_disk("/path/to/attribute_ruler")
Name Type Description
path str / Path A path to a directory. Paths may be either strings or Path-like objects.
keyword-only
exclude Iterable[str] String names of serialization fields to exclude.
RETURNS AttributeRuler The modified AttributeRuler object.

AttributeRuler.to_bytes

Example

attribute_ruler = nlp.add_pipe("attribute_ruler")
attribute_ruler_bytes = attribute_ruler.to_bytes()

Serialize the pipe to a bytestring.

Name Type Description
keyword-only
exclude Iterable[str] String names of serialization fields to exclude.
RETURNS bytes The serialized form of the AttributeRuler object.

AttributeRuler.from_bytes

Load the pipe from a bytestring. Modifies the object in place and returns it.

Example

attribute_ruler_bytes = attribute_ruler.to_bytes()
attribute_ruler = nlp.add_pipe("attribute_ruler")
attribute_ruler.from_bytes(attribute_ruler_bytes)
Name Type Description
bytes_data bytes The data to load from.
keyword-only
exclude Iterable[str] String names of serialization fields to exclude.
RETURNS AttributeRuler The AttributeRuler object.

Serialization fields

During serialization, spaCy will export several data fields used to restore different aspects of the object. If needed, you can exclude them from serialization by passing in the string names via the exclude argument.

Example

data = attribute_ruler.to_disk("/path", exclude=["vocab"])
Name Description
vocab The shared Vocab.
patterns The Matcher patterns. You usually don't want to exclude this.
attrs The attributes to set. You usually don't want to exclude this.
indices The token indices. You usually don't want to exclude this.